Copied to
clipboard

G = D4×C15order 120 = 23·3·5

Direct product of C15 and D4

direct product, metacyclic, nilpotent (class 2), monomial, 2-elementary

Aliases: D4×C15, C4⋊C30, C607C2, C203C6, C123C10, C222C30, C30.23C22, (C2×C6)⋊1C10, (C2×C30)⋊1C2, (C2×C10)⋊3C6, C10.6(C2×C6), C6.6(C2×C10), C2.1(C2×C30), SmallGroup(120,32)

Series: Derived Chief Lower central Upper central

C1C2 — D4×C15
C1C2C10C30C2×C30 — D4×C15
C1C2 — D4×C15
C1C30 — D4×C15

Generators and relations for D4×C15
 G = < a,b,c | a15=b4=c2=1, ab=ba, ac=ca, cbc=b-1 >

2C2
2C2
2C6
2C6
2C10
2C10
2C30
2C30

Smallest permutation representation of D4×C15
On 60 points
Generators in S60
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15)(16 17 18 19 20 21 22 23 24 25 26 27 28 29 30)(31 32 33 34 35 36 37 38 39 40 41 42 43 44 45)(46 47 48 49 50 51 52 53 54 55 56 57 58 59 60)
(1 42 51 29)(2 43 52 30)(3 44 53 16)(4 45 54 17)(5 31 55 18)(6 32 56 19)(7 33 57 20)(8 34 58 21)(9 35 59 22)(10 36 60 23)(11 37 46 24)(12 38 47 25)(13 39 48 26)(14 40 49 27)(15 41 50 28)
(1 29)(2 30)(3 16)(4 17)(5 18)(6 19)(7 20)(8 21)(9 22)(10 23)(11 24)(12 25)(13 26)(14 27)(15 28)(31 55)(32 56)(33 57)(34 58)(35 59)(36 60)(37 46)(38 47)(39 48)(40 49)(41 50)(42 51)(43 52)(44 53)(45 54)

G:=sub<Sym(60)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15)(16,17,18,19,20,21,22,23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38,39,40,41,42,43,44,45)(46,47,48,49,50,51,52,53,54,55,56,57,58,59,60), (1,42,51,29)(2,43,52,30)(3,44,53,16)(4,45,54,17)(5,31,55,18)(6,32,56,19)(7,33,57,20)(8,34,58,21)(9,35,59,22)(10,36,60,23)(11,37,46,24)(12,38,47,25)(13,39,48,26)(14,40,49,27)(15,41,50,28), (1,29)(2,30)(3,16)(4,17)(5,18)(6,19)(7,20)(8,21)(9,22)(10,23)(11,24)(12,25)(13,26)(14,27)(15,28)(31,55)(32,56)(33,57)(34,58)(35,59)(36,60)(37,46)(38,47)(39,48)(40,49)(41,50)(42,51)(43,52)(44,53)(45,54)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15)(16,17,18,19,20,21,22,23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38,39,40,41,42,43,44,45)(46,47,48,49,50,51,52,53,54,55,56,57,58,59,60), (1,42,51,29)(2,43,52,30)(3,44,53,16)(4,45,54,17)(5,31,55,18)(6,32,56,19)(7,33,57,20)(8,34,58,21)(9,35,59,22)(10,36,60,23)(11,37,46,24)(12,38,47,25)(13,39,48,26)(14,40,49,27)(15,41,50,28), (1,29)(2,30)(3,16)(4,17)(5,18)(6,19)(7,20)(8,21)(9,22)(10,23)(11,24)(12,25)(13,26)(14,27)(15,28)(31,55)(32,56)(33,57)(34,58)(35,59)(36,60)(37,46)(38,47)(39,48)(40,49)(41,50)(42,51)(43,52)(44,53)(45,54) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15),(16,17,18,19,20,21,22,23,24,25,26,27,28,29,30),(31,32,33,34,35,36,37,38,39,40,41,42,43,44,45),(46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)], [(1,42,51,29),(2,43,52,30),(3,44,53,16),(4,45,54,17),(5,31,55,18),(6,32,56,19),(7,33,57,20),(8,34,58,21),(9,35,59,22),(10,36,60,23),(11,37,46,24),(12,38,47,25),(13,39,48,26),(14,40,49,27),(15,41,50,28)], [(1,29),(2,30),(3,16),(4,17),(5,18),(6,19),(7,20),(8,21),(9,22),(10,23),(11,24),(12,25),(13,26),(14,27),(15,28),(31,55),(32,56),(33,57),(34,58),(35,59),(36,60),(37,46),(38,47),(39,48),(40,49),(41,50),(42,51),(43,52),(44,53),(45,54)]])

D4×C15 is a maximal subgroup of   D4⋊D15  D4.D15  D42D15

75 conjugacy classes

class 1 2A2B2C3A3B 4 5A5B5C5D6A6B6C6D6E6F10A10B10C10D10E···10L12A12B15A···15H20A20B20C20D30A···30H30I···30X60A···60H
order122233455556666661010101010···10121215···152020202030···3030···3060···60
size1122112111111222211112···2221···122221···12···22···2

75 irreducible representations

dim1111111111112222
type++++
imageC1C2C2C3C5C6C6C10C10C15C30C30D4C3×D4C5×D4D4×C15
kernelD4×C15C60C2×C30C5×D4C3×D4C20C2×C10C12C2×C6D4C4C22C15C5C3C1
# reps11224244888161248

Matrix representation of D4×C15 in GL2(𝔽31) generated by

190
019
,
024
90
,
10
030
G:=sub<GL(2,GF(31))| [19,0,0,19],[0,9,24,0],[1,0,0,30] >;

D4×C15 in GAP, Magma, Sage, TeX

D_4\times C_{15}
% in TeX

G:=Group("D4xC15");
// GroupNames label

G:=SmallGroup(120,32);
// by ID

G=gap.SmallGroup(120,32);
# by ID

G:=PCGroup([5,-2,-2,-3,-5,-2,621]);
// Polycyclic

G:=Group<a,b,c|a^15=b^4=c^2=1,a*b=b*a,a*c=c*a,c*b*c=b^-1>;
// generators/relations

Export

Subgroup lattice of D4×C15 in TeX

׿
×
𝔽