Copied to
clipboard

G = C5×C3⋊D4order 120 = 23·3·5

Direct product of C5 and C3⋊D4

direct product, metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C5×C3⋊D4, C159D4, D62C10, Dic3⋊C10, C10.17D6, C30.22C22, C32(C5×D4), (C2×C10)⋊3S3, (C2×C6)⋊2C10, (C2×C30)⋊6C2, (S3×C10)⋊5C2, C2.5(S3×C10), C6.5(C2×C10), C222(C5×S3), (C5×Dic3)⋊4C2, SmallGroup(120,25)

Series: Derived Chief Lower central Upper central

C1C6 — C5×C3⋊D4
C1C3C6C30S3×C10 — C5×C3⋊D4
C3C6 — C5×C3⋊D4
C1C10C2×C10

Generators and relations for C5×C3⋊D4
 G = < a,b,c,d | a5=b3=c4=d2=1, ab=ba, ac=ca, ad=da, cbc-1=dbd=b-1, dcd=c-1 >

2C2
6C2
3C22
3C4
2C6
2S3
2C10
6C10
3D4
3C2×C10
3C20
2C30
2C5×S3
3C5×D4

Smallest permutation representation of C5×C3⋊D4
On 60 points
Generators in S60
(1 2 3 4 5)(6 7 8 9 10)(11 12 13 14 15)(16 17 18 19 20)(21 22 23 24 25)(26 27 28 29 30)(31 32 33 34 35)(36 37 38 39 40)(41 42 43 44 45)(46 47 48 49 50)(51 52 53 54 55)(56 57 58 59 60)
(1 39 33)(2 40 34)(3 36 35)(4 37 31)(5 38 32)(6 14 19)(7 15 20)(8 11 16)(9 12 17)(10 13 18)(21 58 51)(22 59 52)(23 60 53)(24 56 54)(25 57 55)(26 47 41)(27 48 42)(28 49 43)(29 50 44)(30 46 45)
(1 12 26 56)(2 13 27 57)(3 14 28 58)(4 15 29 59)(5 11 30 60)(6 49 21 36)(7 50 22 37)(8 46 23 38)(9 47 24 39)(10 48 25 40)(16 45 53 32)(17 41 54 33)(18 42 55 34)(19 43 51 35)(20 44 52 31)
(6 51)(7 52)(8 53)(9 54)(10 55)(11 60)(12 56)(13 57)(14 58)(15 59)(16 23)(17 24)(18 25)(19 21)(20 22)(31 37)(32 38)(33 39)(34 40)(35 36)(41 47)(42 48)(43 49)(44 50)(45 46)

G:=sub<Sym(60)| (1,2,3,4,5)(6,7,8,9,10)(11,12,13,14,15)(16,17,18,19,20)(21,22,23,24,25)(26,27,28,29,30)(31,32,33,34,35)(36,37,38,39,40)(41,42,43,44,45)(46,47,48,49,50)(51,52,53,54,55)(56,57,58,59,60), (1,39,33)(2,40,34)(3,36,35)(4,37,31)(5,38,32)(6,14,19)(7,15,20)(8,11,16)(9,12,17)(10,13,18)(21,58,51)(22,59,52)(23,60,53)(24,56,54)(25,57,55)(26,47,41)(27,48,42)(28,49,43)(29,50,44)(30,46,45), (1,12,26,56)(2,13,27,57)(3,14,28,58)(4,15,29,59)(5,11,30,60)(6,49,21,36)(7,50,22,37)(8,46,23,38)(9,47,24,39)(10,48,25,40)(16,45,53,32)(17,41,54,33)(18,42,55,34)(19,43,51,35)(20,44,52,31), (6,51)(7,52)(8,53)(9,54)(10,55)(11,60)(12,56)(13,57)(14,58)(15,59)(16,23)(17,24)(18,25)(19,21)(20,22)(31,37)(32,38)(33,39)(34,40)(35,36)(41,47)(42,48)(43,49)(44,50)(45,46)>;

G:=Group( (1,2,3,4,5)(6,7,8,9,10)(11,12,13,14,15)(16,17,18,19,20)(21,22,23,24,25)(26,27,28,29,30)(31,32,33,34,35)(36,37,38,39,40)(41,42,43,44,45)(46,47,48,49,50)(51,52,53,54,55)(56,57,58,59,60), (1,39,33)(2,40,34)(3,36,35)(4,37,31)(5,38,32)(6,14,19)(7,15,20)(8,11,16)(9,12,17)(10,13,18)(21,58,51)(22,59,52)(23,60,53)(24,56,54)(25,57,55)(26,47,41)(27,48,42)(28,49,43)(29,50,44)(30,46,45), (1,12,26,56)(2,13,27,57)(3,14,28,58)(4,15,29,59)(5,11,30,60)(6,49,21,36)(7,50,22,37)(8,46,23,38)(9,47,24,39)(10,48,25,40)(16,45,53,32)(17,41,54,33)(18,42,55,34)(19,43,51,35)(20,44,52,31), (6,51)(7,52)(8,53)(9,54)(10,55)(11,60)(12,56)(13,57)(14,58)(15,59)(16,23)(17,24)(18,25)(19,21)(20,22)(31,37)(32,38)(33,39)(34,40)(35,36)(41,47)(42,48)(43,49)(44,50)(45,46) );

G=PermutationGroup([(1,2,3,4,5),(6,7,8,9,10),(11,12,13,14,15),(16,17,18,19,20),(21,22,23,24,25),(26,27,28,29,30),(31,32,33,34,35),(36,37,38,39,40),(41,42,43,44,45),(46,47,48,49,50),(51,52,53,54,55),(56,57,58,59,60)], [(1,39,33),(2,40,34),(3,36,35),(4,37,31),(5,38,32),(6,14,19),(7,15,20),(8,11,16),(9,12,17),(10,13,18),(21,58,51),(22,59,52),(23,60,53),(24,56,54),(25,57,55),(26,47,41),(27,48,42),(28,49,43),(29,50,44),(30,46,45)], [(1,12,26,56),(2,13,27,57),(3,14,28,58),(4,15,29,59),(5,11,30,60),(6,49,21,36),(7,50,22,37),(8,46,23,38),(9,47,24,39),(10,48,25,40),(16,45,53,32),(17,41,54,33),(18,42,55,34),(19,43,51,35),(20,44,52,31)], [(6,51),(7,52),(8,53),(9,54),(10,55),(11,60),(12,56),(13,57),(14,58),(15,59),(16,23),(17,24),(18,25),(19,21),(20,22),(31,37),(32,38),(33,39),(34,40),(35,36),(41,47),(42,48),(43,49),(44,50),(45,46)])

C5×C3⋊D4 is a maximal subgroup of   C30.C23  Dic3.D10  D10⋊D6  C5×S3×D4

45 conjugacy classes

class 1 2A2B2C 3  4 5A5B5C5D6A6B6C10A10B10C10D10E10F10G10H10I10J10K10L15A15B15C15D20A20B20C20D30A···30L
order1222345555666101010101010101010101010151515152020202030···30
size1126261111222111122226666222266662···2

45 irreducible representations

dim1111111122222222
type+++++++
imageC1C2C2C2C5C10C10C10S3D4D6C3⋊D4C5×S3C5×D4S3×C10C5×C3⋊D4
kernelC5×C3⋊D4C5×Dic3S3×C10C2×C30C3⋊D4Dic3D6C2×C6C2×C10C15C10C5C22C3C2C1
# reps1111444411124448

Matrix representation of C5×C3⋊D4 in GL2(𝔽31) generated by

40
04
,
19
1029
,
2029
3011
,
19
030
G:=sub<GL(2,GF(31))| [4,0,0,4],[1,10,9,29],[20,30,29,11],[1,0,9,30] >;

C5×C3⋊D4 in GAP, Magma, Sage, TeX

C_5\times C_3\rtimes D_4
% in TeX

G:=Group("C5xC3:D4");
// GroupNames label

G:=SmallGroup(120,25);
// by ID

G=gap.SmallGroup(120,25);
# by ID

G:=PCGroup([5,-2,-2,-5,-2,-3,221,2004]);
// Polycyclic

G:=Group<a,b,c,d|a^5=b^3=c^4=d^2=1,a*b=b*a,a*c=c*a,a*d=d*a,c*b*c^-1=d*b*d=b^-1,d*c*d=c^-1>;
// generators/relations

Export

Subgroup lattice of C5×C3⋊D4 in TeX

׿
×
𝔽