Extensions 1→N→G→Q→1 with N=C2×Dic7 and Q=C2

Direct product G=N×Q with N=C2×Dic7 and Q=C2
dρLabelID
C22×Dic7112C2^2xDic7112,35

Semidirect products G=N:Q with N=C2×Dic7 and Q=C2
extensionφ:Q→Out NdρLabelID
(C2×Dic7)⋊1C2 = D14⋊C4φ: C2/C1C2 ⊆ Out C2×Dic756(C2xDic7):1C2112,13
(C2×Dic7)⋊2C2 = C23.D7φ: C2/C1C2 ⊆ Out C2×Dic756(C2xDic7):2C2112,18
(C2×Dic7)⋊3C2 = D42D7φ: C2/C1C2 ⊆ Out C2×Dic7564-(C2xDic7):3C2112,32
(C2×Dic7)⋊4C2 = C2×C7⋊D4φ: C2/C1C2 ⊆ Out C2×Dic756(C2xDic7):4C2112,36
(C2×Dic7)⋊5C2 = C2×C4×D7φ: trivial image56(C2xDic7):5C2112,28

Non-split extensions G=N.Q with N=C2×Dic7 and Q=C2
extensionφ:Q→Out NdρLabelID
(C2×Dic7).1C2 = Dic7⋊C4φ: C2/C1C2 ⊆ Out C2×Dic7112(C2xDic7).1C2112,11
(C2×Dic7).2C2 = C4⋊Dic7φ: C2/C1C2 ⊆ Out C2×Dic7112(C2xDic7).2C2112,12
(C2×Dic7).3C2 = C2×Dic14φ: C2/C1C2 ⊆ Out C2×Dic7112(C2xDic7).3C2112,27
(C2×Dic7).4C2 = C4×Dic7φ: trivial image112(C2xDic7).4C2112,10

׿
×
𝔽