Copied to
clipboard

G = Dic7:C4order 112 = 24·7

The semidirect product of Dic7 and C4 acting via C4/C2=C2

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: Dic7:C4, C14.5D4, C14.1Q8, C2.1Dic14, C22.4D14, C7:1(C4:C4), C2.4(C4xD7), (C2xC4).1D7, C14.4(C2xC4), (C2xC28).1C2, C2.1(C7:D4), (C2xC14).4C22, (C2xDic7).1C2, SmallGroup(112,11)

Series: Derived Chief Lower central Upper central

C1C14 — Dic7:C4
C1C7C14C2xC14C2xDic7 — Dic7:C4
C7C14 — Dic7:C4
C1C22C2xC4

Generators and relations for Dic7:C4
 G = < a,b,c | a14=c4=1, b2=a7, bab-1=a-1, ac=ca, cbc-1=a7b >

Subgroups: 72 in 26 conjugacy classes, 17 normal (15 characteristic)
Quotients: C1, C2, C4, C22, C2xC4, D4, Q8, D7, C4:C4, D14, Dic14, C4xD7, C7:D4, Dic7:C4
2C4
7C4
7C4
14C4
7C2xC4
7C2xC4
2C28
2Dic7
7C4:C4

Smallest permutation representation of Dic7:C4
Regular action on 112 points
Generators in S112
(1 2 3 4 5 6 7 8 9 10 11 12 13 14)(15 16 17 18 19 20 21 22 23 24 25 26 27 28)(29 30 31 32 33 34 35 36 37 38 39 40 41 42)(43 44 45 46 47 48 49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64 65 66 67 68 69 70)(71 72 73 74 75 76 77 78 79 80 81 82 83 84)(85 86 87 88 89 90 91 92 93 94 95 96 97 98)(99 100 101 102 103 104 105 106 107 108 109 110 111 112)
(1 71 8 78)(2 84 9 77)(3 83 10 76)(4 82 11 75)(5 81 12 74)(6 80 13 73)(7 79 14 72)(15 58 22 65)(16 57 23 64)(17 70 24 63)(18 69 25 62)(19 68 26 61)(20 67 27 60)(21 66 28 59)(29 109 36 102)(30 108 37 101)(31 107 38 100)(32 106 39 99)(33 105 40 112)(34 104 41 111)(35 103 42 110)(43 98 50 91)(44 97 51 90)(45 96 52 89)(46 95 53 88)(47 94 54 87)(48 93 55 86)(49 92 56 85)
(1 56 23 32)(2 43 24 33)(3 44 25 34)(4 45 26 35)(5 46 27 36)(6 47 28 37)(7 48 15 38)(8 49 16 39)(9 50 17 40)(10 51 18 41)(11 52 19 42)(12 53 20 29)(13 54 21 30)(14 55 22 31)(57 106 78 85)(58 107 79 86)(59 108 80 87)(60 109 81 88)(61 110 82 89)(62 111 83 90)(63 112 84 91)(64 99 71 92)(65 100 72 93)(66 101 73 94)(67 102 74 95)(68 103 75 96)(69 104 76 97)(70 105 77 98)

G:=sub<Sym(112)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14)(15,16,17,18,19,20,21,22,23,24,25,26,27,28)(29,30,31,32,33,34,35,36,37,38,39,40,41,42)(43,44,45,46,47,48,49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64,65,66,67,68,69,70)(71,72,73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96,97,98)(99,100,101,102,103,104,105,106,107,108,109,110,111,112), (1,71,8,78)(2,84,9,77)(3,83,10,76)(4,82,11,75)(5,81,12,74)(6,80,13,73)(7,79,14,72)(15,58,22,65)(16,57,23,64)(17,70,24,63)(18,69,25,62)(19,68,26,61)(20,67,27,60)(21,66,28,59)(29,109,36,102)(30,108,37,101)(31,107,38,100)(32,106,39,99)(33,105,40,112)(34,104,41,111)(35,103,42,110)(43,98,50,91)(44,97,51,90)(45,96,52,89)(46,95,53,88)(47,94,54,87)(48,93,55,86)(49,92,56,85), (1,56,23,32)(2,43,24,33)(3,44,25,34)(4,45,26,35)(5,46,27,36)(6,47,28,37)(7,48,15,38)(8,49,16,39)(9,50,17,40)(10,51,18,41)(11,52,19,42)(12,53,20,29)(13,54,21,30)(14,55,22,31)(57,106,78,85)(58,107,79,86)(59,108,80,87)(60,109,81,88)(61,110,82,89)(62,111,83,90)(63,112,84,91)(64,99,71,92)(65,100,72,93)(66,101,73,94)(67,102,74,95)(68,103,75,96)(69,104,76,97)(70,105,77,98)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14)(15,16,17,18,19,20,21,22,23,24,25,26,27,28)(29,30,31,32,33,34,35,36,37,38,39,40,41,42)(43,44,45,46,47,48,49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64,65,66,67,68,69,70)(71,72,73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96,97,98)(99,100,101,102,103,104,105,106,107,108,109,110,111,112), (1,71,8,78)(2,84,9,77)(3,83,10,76)(4,82,11,75)(5,81,12,74)(6,80,13,73)(7,79,14,72)(15,58,22,65)(16,57,23,64)(17,70,24,63)(18,69,25,62)(19,68,26,61)(20,67,27,60)(21,66,28,59)(29,109,36,102)(30,108,37,101)(31,107,38,100)(32,106,39,99)(33,105,40,112)(34,104,41,111)(35,103,42,110)(43,98,50,91)(44,97,51,90)(45,96,52,89)(46,95,53,88)(47,94,54,87)(48,93,55,86)(49,92,56,85), (1,56,23,32)(2,43,24,33)(3,44,25,34)(4,45,26,35)(5,46,27,36)(6,47,28,37)(7,48,15,38)(8,49,16,39)(9,50,17,40)(10,51,18,41)(11,52,19,42)(12,53,20,29)(13,54,21,30)(14,55,22,31)(57,106,78,85)(58,107,79,86)(59,108,80,87)(60,109,81,88)(61,110,82,89)(62,111,83,90)(63,112,84,91)(64,99,71,92)(65,100,72,93)(66,101,73,94)(67,102,74,95)(68,103,75,96)(69,104,76,97)(70,105,77,98) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14),(15,16,17,18,19,20,21,22,23,24,25,26,27,28),(29,30,31,32,33,34,35,36,37,38,39,40,41,42),(43,44,45,46,47,48,49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64,65,66,67,68,69,70),(71,72,73,74,75,76,77,78,79,80,81,82,83,84),(85,86,87,88,89,90,91,92,93,94,95,96,97,98),(99,100,101,102,103,104,105,106,107,108,109,110,111,112)], [(1,71,8,78),(2,84,9,77),(3,83,10,76),(4,82,11,75),(5,81,12,74),(6,80,13,73),(7,79,14,72),(15,58,22,65),(16,57,23,64),(17,70,24,63),(18,69,25,62),(19,68,26,61),(20,67,27,60),(21,66,28,59),(29,109,36,102),(30,108,37,101),(31,107,38,100),(32,106,39,99),(33,105,40,112),(34,104,41,111),(35,103,42,110),(43,98,50,91),(44,97,51,90),(45,96,52,89),(46,95,53,88),(47,94,54,87),(48,93,55,86),(49,92,56,85)], [(1,56,23,32),(2,43,24,33),(3,44,25,34),(4,45,26,35),(5,46,27,36),(6,47,28,37),(7,48,15,38),(8,49,16,39),(9,50,17,40),(10,51,18,41),(11,52,19,42),(12,53,20,29),(13,54,21,30),(14,55,22,31),(57,106,78,85),(58,107,79,86),(59,108,80,87),(60,109,81,88),(61,110,82,89),(62,111,83,90),(63,112,84,91),(64,99,71,92),(65,100,72,93),(66,101,73,94),(67,102,74,95),(68,103,75,96),(69,104,76,97),(70,105,77,98)]])

Dic7:C4 is a maximal subgroup of
C4xDic14  C28.6Q8  C42:D7  C42:2D7  C23.11D14  C22:Dic14  C23.D14  Dic7:4D4  D14.D4  D14:D4  Dic7:3Q8  C28:Q8  Dic7.Q8  C28.3Q8  D7xC4:C4  D14.5D4  D14:Q8  C4:C4:D7  C28.48D4  C4xC7:D4  C23.23D14  C23.18D14  Dic7:D4  Dic7:Q8  D14:3Q8  Dic7:C12  C42.Q8  Dic21:C4  C42.4Q8
Dic7:C4 is a maximal quotient of
C28.Q8  C4.Dic14  Dic7:C8  C28.53D4  C14.C42  C42.Q8  Dic21:C4  C42.4Q8

34 conjugacy classes

class 1 2A2B2C4A4B4C4D4E4F7A7B7C14A···14I28A···28L
order122244444477714···1428···28
size111122141414142222···22···2

34 irreducible representations

dim11112222222
type++++-++-
imageC1C2C2C4D4Q8D7D14Dic14C4xD7C7:D4
kernelDic7:C4C2xDic7C2xC28Dic7C14C14C2xC4C22C2C2C2
# reps12141133666

Matrix representation of Dic7:C4 in GL4(F29) generated by

0100
28700
00828
00218
,
71000
12200
001617
001913
,
17000
01700
002611
0073
G:=sub<GL(4,GF(29))| [0,28,0,0,1,7,0,0,0,0,8,2,0,0,28,18],[7,1,0,0,10,22,0,0,0,0,16,19,0,0,17,13],[17,0,0,0,0,17,0,0,0,0,26,7,0,0,11,3] >;

Dic7:C4 in GAP, Magma, Sage, TeX

{\rm Dic}_7\rtimes C_4
% in TeX

G:=Group("Dic7:C4");
// GroupNames label

G:=SmallGroup(112,11);
// by ID

G=gap.SmallGroup(112,11);
# by ID

G:=PCGroup([5,-2,-2,-2,-2,-7,40,101,26,2404]);
// Polycyclic

G:=Group<a,b,c|a^14=c^4=1,b^2=a^7,b*a*b^-1=a^-1,a*c=c*a,c*b*c^-1=a^7*b>;
// generators/relations

Export

Subgroup lattice of Dic7:C4 in TeX

׿
x
:
Z
F
o
wr
Q
<