direct product, metabelian, supersoluble, monomial, 2-hyperelementary
Aliases: C2xC7:D4, C23:D7, C14:2D4, C22:2D14, D14:3C22, C14.10C23, Dic7:2C22, C7:3(C2xD4), (C2xC14):3C22, (C22xC14):2C2, (C2xDic7):4C2, (C22xD7):3C2, C2.10(C22xD7), SmallGroup(112,36)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for C2xC7:D4
G = < a,b,c,d | a2=b7=c4=d2=1, ab=ba, ac=ca, ad=da, cbc-1=dbd=b-1, dcd=c-1 >
Subgroups: 184 in 54 conjugacy classes, 27 normal (11 characteristic)
C1, C2, C2, C2, C4, C22, C22, C22, C7, C2xC4, D4, C23, C23, D7, C14, C14, C14, C2xD4, Dic7, D14, D14, C2xC14, C2xC14, C2xC14, C2xDic7, C7:D4, C22xD7, C22xC14, C2xC7:D4
Quotients: C1, C2, C22, D4, C23, D7, C2xD4, D14, C7:D4, C22xD7, C2xC7:D4
(1 36)(2 37)(3 38)(4 39)(5 40)(6 41)(7 42)(8 29)(9 30)(10 31)(11 32)(12 33)(13 34)(14 35)(15 50)(16 51)(17 52)(18 53)(19 54)(20 55)(21 56)(22 43)(23 44)(24 45)(25 46)(26 47)(27 48)(28 49)
(1 2 3 4 5 6 7)(8 9 10 11 12 13 14)(15 16 17 18 19 20 21)(22 23 24 25 26 27 28)(29 30 31 32 33 34 35)(36 37 38 39 40 41 42)(43 44 45 46 47 48 49)(50 51 52 53 54 55 56)
(1 15 8 22)(2 21 9 28)(3 20 10 27)(4 19 11 26)(5 18 12 25)(6 17 13 24)(7 16 14 23)(29 43 36 50)(30 49 37 56)(31 48 38 55)(32 47 39 54)(33 46 40 53)(34 45 41 52)(35 44 42 51)
(2 7)(3 6)(4 5)(9 14)(10 13)(11 12)(15 22)(16 28)(17 27)(18 26)(19 25)(20 24)(21 23)(30 35)(31 34)(32 33)(37 42)(38 41)(39 40)(43 50)(44 56)(45 55)(46 54)(47 53)(48 52)(49 51)
G:=sub<Sym(56)| (1,36)(2,37)(3,38)(4,39)(5,40)(6,41)(7,42)(8,29)(9,30)(10,31)(11,32)(12,33)(13,34)(14,35)(15,50)(16,51)(17,52)(18,53)(19,54)(20,55)(21,56)(22,43)(23,44)(24,45)(25,46)(26,47)(27,48)(28,49), (1,2,3,4,5,6,7)(8,9,10,11,12,13,14)(15,16,17,18,19,20,21)(22,23,24,25,26,27,28)(29,30,31,32,33,34,35)(36,37,38,39,40,41,42)(43,44,45,46,47,48,49)(50,51,52,53,54,55,56), (1,15,8,22)(2,21,9,28)(3,20,10,27)(4,19,11,26)(5,18,12,25)(6,17,13,24)(7,16,14,23)(29,43,36,50)(30,49,37,56)(31,48,38,55)(32,47,39,54)(33,46,40,53)(34,45,41,52)(35,44,42,51), (2,7)(3,6)(4,5)(9,14)(10,13)(11,12)(15,22)(16,28)(17,27)(18,26)(19,25)(20,24)(21,23)(30,35)(31,34)(32,33)(37,42)(38,41)(39,40)(43,50)(44,56)(45,55)(46,54)(47,53)(48,52)(49,51)>;
G:=Group( (1,36)(2,37)(3,38)(4,39)(5,40)(6,41)(7,42)(8,29)(9,30)(10,31)(11,32)(12,33)(13,34)(14,35)(15,50)(16,51)(17,52)(18,53)(19,54)(20,55)(21,56)(22,43)(23,44)(24,45)(25,46)(26,47)(27,48)(28,49), (1,2,3,4,5,6,7)(8,9,10,11,12,13,14)(15,16,17,18,19,20,21)(22,23,24,25,26,27,28)(29,30,31,32,33,34,35)(36,37,38,39,40,41,42)(43,44,45,46,47,48,49)(50,51,52,53,54,55,56), (1,15,8,22)(2,21,9,28)(3,20,10,27)(4,19,11,26)(5,18,12,25)(6,17,13,24)(7,16,14,23)(29,43,36,50)(30,49,37,56)(31,48,38,55)(32,47,39,54)(33,46,40,53)(34,45,41,52)(35,44,42,51), (2,7)(3,6)(4,5)(9,14)(10,13)(11,12)(15,22)(16,28)(17,27)(18,26)(19,25)(20,24)(21,23)(30,35)(31,34)(32,33)(37,42)(38,41)(39,40)(43,50)(44,56)(45,55)(46,54)(47,53)(48,52)(49,51) );
G=PermutationGroup([[(1,36),(2,37),(3,38),(4,39),(5,40),(6,41),(7,42),(8,29),(9,30),(10,31),(11,32),(12,33),(13,34),(14,35),(15,50),(16,51),(17,52),(18,53),(19,54),(20,55),(21,56),(22,43),(23,44),(24,45),(25,46),(26,47),(27,48),(28,49)], [(1,2,3,4,5,6,7),(8,9,10,11,12,13,14),(15,16,17,18,19,20,21),(22,23,24,25,26,27,28),(29,30,31,32,33,34,35),(36,37,38,39,40,41,42),(43,44,45,46,47,48,49),(50,51,52,53,54,55,56)], [(1,15,8,22),(2,21,9,28),(3,20,10,27),(4,19,11,26),(5,18,12,25),(6,17,13,24),(7,16,14,23),(29,43,36,50),(30,49,37,56),(31,48,38,55),(32,47,39,54),(33,46,40,53),(34,45,41,52),(35,44,42,51)], [(2,7),(3,6),(4,5),(9,14),(10,13),(11,12),(15,22),(16,28),(17,27),(18,26),(19,25),(20,24),(21,23),(30,35),(31,34),(32,33),(37,42),(38,41),(39,40),(43,50),(44,56),(45,55),(46,54),(47,53),(48,52),(49,51)]])
C2xC7:D4 is a maximal subgroup of
C23.1D14 Dic7:4D4 C22:D28 D14.D4 D14:D4 Dic7.D4 C22.D28 C23.23D14 C28:7D4 C23:D14 C28:2D4 Dic7:D4 C28:D4 C24:D7 C2xD4xD7 D4:6D14
C2xC7:D4 is a maximal quotient of
C28.48D4 C23.23D14 C28:7D4 D4.D14 C23.18D14 C28.17D4 C23:D14 C28:2D4 Dic7:D4 C28:D4 C28.C23 Dic7:Q8 D14:3Q8 C28.23D4 D4:D14 D4.8D14 D4.9D14 C24:D7
34 conjugacy classes
class | 1 | 2A | 2B | 2C | 2D | 2E | 2F | 2G | 4A | 4B | 7A | 7B | 7C | 14A | ··· | 14U |
order | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 4 | 4 | 7 | 7 | 7 | 14 | ··· | 14 |
size | 1 | 1 | 1 | 1 | 2 | 2 | 14 | 14 | 14 | 14 | 2 | 2 | 2 | 2 | ··· | 2 |
34 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 |
type | + | + | + | + | + | + | + | + | |
image | C1 | C2 | C2 | C2 | C2 | D4 | D7 | D14 | C7:D4 |
kernel | C2xC7:D4 | C2xDic7 | C7:D4 | C22xD7 | C22xC14 | C14 | C23 | C22 | C2 |
# reps | 1 | 1 | 4 | 1 | 1 | 2 | 3 | 9 | 12 |
Matrix representation of C2xC7:D4 ►in GL3(F29) generated by
28 | 0 | 0 |
0 | 1 | 0 |
0 | 0 | 1 |
1 | 0 | 0 |
0 | 3 | 28 |
0 | 1 | 0 |
28 | 0 | 0 |
0 | 5 | 16 |
0 | 2 | 24 |
28 | 0 | 0 |
0 | 1 | 0 |
0 | 3 | 28 |
G:=sub<GL(3,GF(29))| [28,0,0,0,1,0,0,0,1],[1,0,0,0,3,1,0,28,0],[28,0,0,0,5,2,0,16,24],[28,0,0,0,1,3,0,0,28] >;
C2xC7:D4 in GAP, Magma, Sage, TeX
C_2\times C_7\rtimes D_4
% in TeX
G:=Group("C2xC7:D4");
// GroupNames label
G:=SmallGroup(112,36);
// by ID
G=gap.SmallGroup(112,36);
# by ID
G:=PCGroup([5,-2,-2,-2,-2,-7,182,2404]);
// Polycyclic
G:=Group<a,b,c,d|a^2=b^7=c^4=d^2=1,a*b=b*a,a*c=c*a,a*d=d*a,c*b*c^-1=d*b*d=b^-1,d*c*d=c^-1>;
// generators/relations