Extensions 1→N→G→Q→1 with N=C3 and Q=C3×Dic3

Direct product G=N×Q with N=C3 and Q=C3×Dic3
dρLabelID
C32×Dic336C3^2xDic3108,32

Semidirect products G=N:Q with N=C3 and Q=C3×Dic3
extensionφ:Q→Aut NdρLabelID
C3⋊(C3×Dic3) = C3×C3⋊Dic3φ: C3×Dic3/C3×C6C2 ⊆ Aut C336C3:(C3xDic3)108,33

Non-split extensions G=N.Q with N=C3 and Q=C3×Dic3
extensionφ:Q→Aut NdρLabelID
C3.1(C3×Dic3) = C3×Dic9φ: C3×Dic3/C3×C6C2 ⊆ Aut C3362C3.1(C3xDic3)108,6
C3.2(C3×Dic3) = C32⋊C12φ: C3×Dic3/C3×C6C2 ⊆ Aut C3366-C3.2(C3xDic3)108,8
C3.3(C3×Dic3) = C9⋊C12φ: C3×Dic3/C3×C6C2 ⊆ Aut C3366-C3.3(C3xDic3)108,9
C3.4(C3×Dic3) = C9×Dic3central extension (φ=1)362C3.4(C3xDic3)108,7

׿
×
𝔽