Copied to
clipboard

G = C9×Dic3order 108 = 22·33

Direct product of C9 and Dic3

direct product, metacyclic, supersoluble, monomial, A-group

Aliases: C9×Dic3, C3⋊C36, C6.C18, C18.4S3, C32.2C12, (C3×C9)⋊1C4, C2.(S3×C9), C6.8(C3×S3), (C3×C6).5C6, (C3×C18).1C2, C18(C3×Dic3), (C3×Dic3).C3, C3.4(C3×Dic3), SmallGroup(108,7)

Series: Derived Chief Lower central Upper central

C1C3 — C9×Dic3
C1C3C32C3×C6C3×C18 — C9×Dic3
C3 — C9×Dic3
C1C18

Generators and relations for C9×Dic3
 G = < a,b,c | a9=b6=1, c2=b3, ab=ba, ac=ca, cbc-1=b-1 >

2C3
3C4
2C6
2C9
3C12
2C18
3C36

Smallest permutation representation of C9×Dic3
On 36 points
Generators in S36
(1 2 3 4 5 6 7 8 9)(10 11 12 13 14 15 16 17 18)(19 20 21 22 23 24 25 26 27)(28 29 30 31 32 33 34 35 36)
(1 26 4 20 7 23)(2 27 5 21 8 24)(3 19 6 22 9 25)(10 34 16 31 13 28)(11 35 17 32 14 29)(12 36 18 33 15 30)
(1 10 20 31)(2 11 21 32)(3 12 22 33)(4 13 23 34)(5 14 24 35)(6 15 25 36)(7 16 26 28)(8 17 27 29)(9 18 19 30)

G:=sub<Sym(36)| (1,2,3,4,5,6,7,8,9)(10,11,12,13,14,15,16,17,18)(19,20,21,22,23,24,25,26,27)(28,29,30,31,32,33,34,35,36), (1,26,4,20,7,23)(2,27,5,21,8,24)(3,19,6,22,9,25)(10,34,16,31,13,28)(11,35,17,32,14,29)(12,36,18,33,15,30), (1,10,20,31)(2,11,21,32)(3,12,22,33)(4,13,23,34)(5,14,24,35)(6,15,25,36)(7,16,26,28)(8,17,27,29)(9,18,19,30)>;

G:=Group( (1,2,3,4,5,6,7,8,9)(10,11,12,13,14,15,16,17,18)(19,20,21,22,23,24,25,26,27)(28,29,30,31,32,33,34,35,36), (1,26,4,20,7,23)(2,27,5,21,8,24)(3,19,6,22,9,25)(10,34,16,31,13,28)(11,35,17,32,14,29)(12,36,18,33,15,30), (1,10,20,31)(2,11,21,32)(3,12,22,33)(4,13,23,34)(5,14,24,35)(6,15,25,36)(7,16,26,28)(8,17,27,29)(9,18,19,30) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9),(10,11,12,13,14,15,16,17,18),(19,20,21,22,23,24,25,26,27),(28,29,30,31,32,33,34,35,36)], [(1,26,4,20,7,23),(2,27,5,21,8,24),(3,19,6,22,9,25),(10,34,16,31,13,28),(11,35,17,32,14,29),(12,36,18,33,15,30)], [(1,10,20,31),(2,11,21,32),(3,12,22,33),(4,13,23,34),(5,14,24,35),(6,15,25,36),(7,16,26,28),(8,17,27,29),(9,18,19,30)]])

C9×Dic3 is a maximal subgroup of
C9⋊Dic6  C18.D6  C3⋊D36  S3×C36  C32⋊C36  C9⋊C36  He3.C12  He3.2C12  He3.5C12  Q8⋊C93S3
C9×Dic3 is a maximal quotient of
C32⋊C36  C9⋊C36

54 conjugacy classes

class 1  2 3A3B3C3D3E4A4B6A6B6C6D6E9A···9F9G···9L12A12B12C12D18A···18F18G···18L36A···36L
order123333344666669···99···91212121218···1818···1836···36
size111122233112221···12···233331···12···23···3

54 irreducible representations

dim111111111222222
type+++-
imageC1C2C3C4C6C9C12C18C36S3Dic3C3×S3C3×Dic3S3×C9C9×Dic3
kernelC9×Dic3C3×C18C3×Dic3C3×C9C3×C6Dic3C32C6C3C18C9C6C3C2C1
# reps1122264612112266

Matrix representation of C9×Dic3 in GL2(𝔽19) generated by

90
09
,
120
08
,
018
10
G:=sub<GL(2,GF(19))| [9,0,0,9],[12,0,0,8],[0,1,18,0] >;

C9×Dic3 in GAP, Magma, Sage, TeX

C_9\times {\rm Dic}_3
% in TeX

G:=Group("C9xDic3");
// GroupNames label

G:=SmallGroup(108,7);
// by ID

G=gap.SmallGroup(108,7);
# by ID

G:=PCGroup([5,-2,-3,-2,-3,-3,30,66,1804]);
// Polycyclic

G:=Group<a,b,c|a^9=b^6=1,c^2=b^3,a*b=b*a,a*c=c*a,c*b*c^-1=b^-1>;
// generators/relations

Export

Subgroup lattice of C9×Dic3 in TeX

׿
×
𝔽