Copied to
clipboard

G = C9⋊C12order 108 = 22·33

The semidirect product of C9 and C12 acting via C12/C2=C6

metacyclic, supersoluble, monomial

Aliases: C9⋊C12, C18.C6, Dic9⋊C3, 3- 1+2⋊C4, C32.Dic3, C2.(C9⋊C6), C6.3(C3×S3), (C3×C6).2S3, C3.3(C3×Dic3), (C2×3- 1+2).C2, SmallGroup(108,9)

Series: Derived Chief Lower central Upper central

C1C9 — C9⋊C12
C1C3C9C18C2×3- 1+2 — C9⋊C12
C9 — C9⋊C12
C1C2

Generators and relations for C9⋊C12
 G = < a,b | a9=b12=1, bab-1=a5 >

3C3
9C4
3C6
2C9
3Dic3
9C12
2C18
3C3×Dic3

Character table of C9⋊C12

 class 123A3B3C4A4B6A6B6C9A9B9C12A12B12C12D18A18B18C
 size 11233992336669999666
ρ111111111111111111111    trivial
ρ211111-1-1111111-1-1-1-1111    linear of order 2
ρ3111ζ3ζ32111ζ32ζ3ζ32ζ31ζ3ζ32ζ32ζ3ζ3ζ321    linear of order 3
ρ4111ζ32ζ3111ζ3ζ32ζ3ζ321ζ32ζ3ζ3ζ32ζ32ζ31    linear of order 3
ρ5111ζ32ζ3-1-11ζ3ζ32ζ3ζ321ζ6ζ65ζ65ζ6ζ32ζ31    linear of order 6
ρ6111ζ3ζ32-1-11ζ32ζ3ζ32ζ31ζ65ζ6ζ6ζ65ζ3ζ321    linear of order 6
ρ71-1111i-i-1-1-1111i-ii-i-1-1-1    linear of order 4
ρ81-1111-ii-1-1-1111-ii-ii-1-1-1    linear of order 4
ρ91-11ζ32ζ3i-i-1ζ65ζ6ζ3ζ321ζ4ζ32ζ43ζ3ζ4ζ3ζ43ζ32ζ6ζ65-1    linear of order 12
ρ101-11ζ3ζ32i-i-1ζ6ζ65ζ32ζ31ζ4ζ3ζ43ζ32ζ4ζ32ζ43ζ3ζ65ζ6-1    linear of order 12
ρ111-11ζ32ζ3-ii-1ζ65ζ6ζ3ζ321ζ43ζ32ζ4ζ3ζ43ζ3ζ4ζ32ζ6ζ65-1    linear of order 12
ρ121-11ζ3ζ32-ii-1ζ6ζ65ζ32ζ31ζ43ζ3ζ4ζ32ζ43ζ32ζ4ζ3ζ65ζ6-1    linear of order 12
ρ132222200222-1-1-10000-1-1-1    orthogonal lifted from S3
ρ142-222200-2-2-2-1-1-10000111    symplectic lifted from Dic3, Schur index 2
ρ15222-1+-3-1--3002-1--3-1+-3ζ6ζ65-10000ζ65ζ6-1    complex lifted from C3×S3
ρ16222-1--3-1+-3002-1+-3-1--3ζ65ζ6-10000ζ6ζ65-1    complex lifted from C3×S3
ρ172-22-1+-3-1--300-21+-31--3ζ6ζ65-10000ζ3ζ321    complex lifted from C3×Dic3
ρ182-22-1--3-1+-300-21--31+-3ζ65ζ6-10000ζ32ζ31    complex lifted from C3×Dic3
ρ1966-30000-3000000000000    orthogonal lifted from C9⋊C6
ρ206-6-300003000000000000    symplectic faithful, Schur index 2

Smallest permutation representation of C9⋊C12
On 36 points
Generators in S36
(1 29 21 11 25 13 5 33 17)(2 14 30 6 22 34 12 18 26)(3 35 15 9 31 19 7 27 23)(4 20 36 8 16 28 10 24 32)
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16 17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32 33 34 35 36)

G:=sub<Sym(36)| (1,29,21,11,25,13,5,33,17)(2,14,30,6,22,34,12,18,26)(3,35,15,9,31,19,7,27,23)(4,20,36,8,16,28,10,24,32), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)>;

G:=Group( (1,29,21,11,25,13,5,33,17)(2,14,30,6,22,34,12,18,26)(3,35,15,9,31,19,7,27,23)(4,20,36,8,16,28,10,24,32), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36) );

G=PermutationGroup([[(1,29,21,11,25,13,5,33,17),(2,14,30,6,22,34,12,18,26),(3,35,15,9,31,19,7,27,23),(4,20,36,8,16,28,10,24,32)], [(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16,17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32,33,34,35,36)]])

C9⋊C12 is a maximal subgroup of
C36.C6  C4×C9⋊C6  Dic9⋊C6  C33⋊Dic3  He3.3Dic3  3- 1+2.Dic3  C33.Dic3  He3.4Dic3  C32.CSU2(𝔽3)  C62.Dic3  Dic9.A4  Dic9⋊A4
C9⋊C12 is a maximal quotient of
C9⋊C24  C32⋊Dic9  C9⋊C36  C33.Dic3  C62.Dic3  Dic9⋊A4

Matrix representation of C9⋊C12 in GL8(𝔽37)

01000000
3636000000
000036100
000036000
000000361
000000360
00100000
00010000
,
120000000
1936000000
0033120000
00840000
0000001229
000000425
0000331200
00008400

G:=sub<GL(8,GF(37))| [0,36,0,0,0,0,0,0,1,36,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,36,36,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,36,36,0,0,0,0,0,0,1,0,0,0],[1,19,0,0,0,0,0,0,20,36,0,0,0,0,0,0,0,0,33,8,0,0,0,0,0,0,12,4,0,0,0,0,0,0,0,0,0,0,33,8,0,0,0,0,0,0,12,4,0,0,0,0,12,4,0,0,0,0,0,0,29,25,0,0] >;

C9⋊C12 in GAP, Magma, Sage, TeX

C_9\rtimes C_{12}
% in TeX

G:=Group("C9:C12");
// GroupNames label

G:=SmallGroup(108,9);
// by ID

G=gap.SmallGroup(108,9);
# by ID

G:=PCGroup([5,-2,-3,-2,-3,-3,30,1203,488,138,1804]);
// Polycyclic

G:=Group<a,b|a^9=b^12=1,b*a*b^-1=a^5>;
// generators/relations

Export

Subgroup lattice of C9⋊C12 in TeX
Character table of C9⋊C12 in TeX

׿
×
𝔽