Copied to
clipboard

G = C161C8order 128 = 27

1st semidirect product of C16 and C8 acting via C8/C2=C4

p-group, metacyclic, nilpotent (class 4), monomial

Aliases: C161C8, C42.41D4, C8.17M4(2), C4.3(C4⋊C8), (C2×C16).1C4, C8.19(C2×C8), (C2×C8).25Q8, C165C4.3C2, C82C8.12C2, C2.3(C82C8), C2.1(C8.Q8), (C2×C4).86SD16, C4.2(C8.C4), (C4×C8).284C22, C22.12(C4.Q8), (C2×C4).99(C4⋊C4), (C2×C8).229(C2×C4), SmallGroup(128,100)

Series: Derived Chief Lower central Upper central Jennings

C1C8 — C161C8
C1C2C22C2×C4C42C4×C8C165C4 — C161C8
C1C2C4C8 — C161C8
C1C22C42C4×C8 — C161C8
C1C2C2C2C2C2×C4C2×C4C4×C8 — C161C8

Generators and relations for C161C8
 G = < a,b | a16=b8=1, bab-1=a11 >

2C4
2C4
2C8
8C8
8C8
2C16
4C2×C8
4C2×C8
2C4⋊C8
2C4⋊C8

Smallest permutation representation of C161C8
Regular action on 128 points
Generators in S128
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64)(65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96)(97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112)(113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128)
(1 80 33 31 121 85 49 108)(2 67 42 26 122 88 58 103)(3 70 35 21 123 91 51 98)(4 73 44 32 124 94 60 109)(5 76 37 27 125 81 53 104)(6 79 46 22 126 84 62 99)(7 66 39 17 127 87 55 110)(8 69 48 28 128 90 64 105)(9 72 41 23 113 93 57 100)(10 75 34 18 114 96 50 111)(11 78 43 29 115 83 59 106)(12 65 36 24 116 86 52 101)(13 68 45 19 117 89 61 112)(14 71 38 30 118 92 54 107)(15 74 47 25 119 95 63 102)(16 77 40 20 120 82 56 97)

G:=sub<Sym(128)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128), (1,80,33,31,121,85,49,108)(2,67,42,26,122,88,58,103)(3,70,35,21,123,91,51,98)(4,73,44,32,124,94,60,109)(5,76,37,27,125,81,53,104)(6,79,46,22,126,84,62,99)(7,66,39,17,127,87,55,110)(8,69,48,28,128,90,64,105)(9,72,41,23,113,93,57,100)(10,75,34,18,114,96,50,111)(11,78,43,29,115,83,59,106)(12,65,36,24,116,86,52,101)(13,68,45,19,117,89,61,112)(14,71,38,30,118,92,54,107)(15,74,47,25,119,95,63,102)(16,77,40,20,120,82,56,97)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128), (1,80,33,31,121,85,49,108)(2,67,42,26,122,88,58,103)(3,70,35,21,123,91,51,98)(4,73,44,32,124,94,60,109)(5,76,37,27,125,81,53,104)(6,79,46,22,126,84,62,99)(7,66,39,17,127,87,55,110)(8,69,48,28,128,90,64,105)(9,72,41,23,113,93,57,100)(10,75,34,18,114,96,50,111)(11,78,43,29,115,83,59,106)(12,65,36,24,116,86,52,101)(13,68,45,19,117,89,61,112)(14,71,38,30,118,92,54,107)(15,74,47,25,119,95,63,102)(16,77,40,20,120,82,56,97) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64),(65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96),(97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112),(113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128)], [(1,80,33,31,121,85,49,108),(2,67,42,26,122,88,58,103),(3,70,35,21,123,91,51,98),(4,73,44,32,124,94,60,109),(5,76,37,27,125,81,53,104),(6,79,46,22,126,84,62,99),(7,66,39,17,127,87,55,110),(8,69,48,28,128,90,64,105),(9,72,41,23,113,93,57,100),(10,75,34,18,114,96,50,111),(11,78,43,29,115,83,59,106),(12,65,36,24,116,86,52,101),(13,68,45,19,117,89,61,112),(14,71,38,30,118,92,54,107),(15,74,47,25,119,95,63,102),(16,77,40,20,120,82,56,97)]])

32 conjugacy classes

class 1 2A2B2C4A···4F8A8B8C8D8E8F8G···8N16A···16H
order12224···48888888···816···16
size11112···22222448···84···4

32 irreducible representations

dim11111222224
type++++-
imageC1C2C2C4C8D4Q8M4(2)SD16C8.C4C8.Q8
kernelC161C8C82C8C165C4C2×C16C16C42C2×C8C8C2×C4C4C2
# reps12148112444

Matrix representation of C161C8 in GL6(𝔽17)

0160000
100000
0021627
00414114
004141113
00107107
,
8120000
1290000
0002159
005353
001412143
0002150

G:=sub<GL(6,GF(17))| [0,1,0,0,0,0,16,0,0,0,0,0,0,0,2,4,4,10,0,0,16,14,14,7,0,0,2,11,11,10,0,0,7,4,13,7],[8,12,0,0,0,0,12,9,0,0,0,0,0,0,0,5,14,0,0,0,2,3,12,2,0,0,15,5,14,15,0,0,9,3,3,0] >;

C161C8 in GAP, Magma, Sage, TeX

C_{16}\rtimes_1C_8
% in TeX

G:=Group("C16:1C8");
// GroupNames label

G:=SmallGroup(128,100);
// by ID

G=gap.SmallGroup(128,100);
# by ID

G:=PCGroup([7,-2,2,-2,2,-2,2,-2,56,85,36,422,100,1018,136,2804,172]);
// Polycyclic

G:=Group<a,b|a^16=b^8=1,b*a*b^-1=a^11>;
// generators/relations

Export

Subgroup lattice of C161C8 in TeX

׿
×
𝔽