Copied to
clipboard

G = C82C16order 128 = 27

2nd semidirect product of C8 and C16 acting via C16/C8=C2

p-group, metacyclic, nilpotent (class 3), monomial

Aliases: C82C16, C82.8C2, C8.39SD16, C4.4M5(2), (C2×C8).7C8, C4⋊C16.7C2, (C4×C8).30C4, C4.6(C2×C16), C2.3(C4⋊C16), (C2×C8).34Q8, (C2×C8).396D4, C2.2(C82C8), C4.13(C4.Q8), C2.1(C8.C8), C22.16(C4⋊C8), C42.305(C2×C4), (C4×C8).356C22, (C2×C4).56M4(2), C4.12(C8.C4), (C2×C4).71(C2×C8), (C2×C4).156(C4⋊C4), SmallGroup(128,99)

Series: Derived Chief Lower central Upper central Jennings

C1C4 — C82C16
C1C2C4C2×C4C2×C8C4×C8C82 — C82C16
C1C2C4 — C82C16
C1C2×C8C4×C8 — C82C16
C1C2C2C2C2C2×C4C2×C4C4×C8 — C82C16

Generators and relations for C82C16
 G = < a,b | a8=b16=1, bab-1=a3 >

2C4
2C8
2C8
2C8
2C8
2C2×C8
4C16
4C16
2C2×C16
2C2×C16

Smallest permutation representation of C82C16
Regular action on 128 points
Generators in S128
(1 53 17 84 125 66 105 34)(2 85 106 54 126 35 18 67)(3 55 19 86 127 68 107 36)(4 87 108 56 128 37 20 69)(5 57 21 88 113 70 109 38)(6 89 110 58 114 39 22 71)(7 59 23 90 115 72 111 40)(8 91 112 60 116 41 24 73)(9 61 25 92 117 74 97 42)(10 93 98 62 118 43 26 75)(11 63 27 94 119 76 99 44)(12 95 100 64 120 45 28 77)(13 49 29 96 121 78 101 46)(14 81 102 50 122 47 30 79)(15 51 31 82 123 80 103 48)(16 83 104 52 124 33 32 65)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64)(65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96)(97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112)(113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128)

G:=sub<Sym(128)| (1,53,17,84,125,66,105,34)(2,85,106,54,126,35,18,67)(3,55,19,86,127,68,107,36)(4,87,108,56,128,37,20,69)(5,57,21,88,113,70,109,38)(6,89,110,58,114,39,22,71)(7,59,23,90,115,72,111,40)(8,91,112,60,116,41,24,73)(9,61,25,92,117,74,97,42)(10,93,98,62,118,43,26,75)(11,63,27,94,119,76,99,44)(12,95,100,64,120,45,28,77)(13,49,29,96,121,78,101,46)(14,81,102,50,122,47,30,79)(15,51,31,82,123,80,103,48)(16,83,104,52,124,33,32,65), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128)>;

G:=Group( (1,53,17,84,125,66,105,34)(2,85,106,54,126,35,18,67)(3,55,19,86,127,68,107,36)(4,87,108,56,128,37,20,69)(5,57,21,88,113,70,109,38)(6,89,110,58,114,39,22,71)(7,59,23,90,115,72,111,40)(8,91,112,60,116,41,24,73)(9,61,25,92,117,74,97,42)(10,93,98,62,118,43,26,75)(11,63,27,94,119,76,99,44)(12,95,100,64,120,45,28,77)(13,49,29,96,121,78,101,46)(14,81,102,50,122,47,30,79)(15,51,31,82,123,80,103,48)(16,83,104,52,124,33,32,65), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128) );

G=PermutationGroup([[(1,53,17,84,125,66,105,34),(2,85,106,54,126,35,18,67),(3,55,19,86,127,68,107,36),(4,87,108,56,128,37,20,69),(5,57,21,88,113,70,109,38),(6,89,110,58,114,39,22,71),(7,59,23,90,115,72,111,40),(8,91,112,60,116,41,24,73),(9,61,25,92,117,74,97,42),(10,93,98,62,118,43,26,75),(11,63,27,94,119,76,99,44),(12,95,100,64,120,45,28,77),(13,49,29,96,121,78,101,46),(14,81,102,50,122,47,30,79),(15,51,31,82,123,80,103,48),(16,83,104,52,124,33,32,65)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64),(65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96),(97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112),(113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128)]])

56 conjugacy classes

class 1 2A2B2C4A4B4C4D4E4F4G4H8A···8H8I···8AB16A···16P
order1222444444448···88···816···16
size1111111122221···12···24···4

56 irreducible representations

dim1111112222222
type++++-
imageC1C2C2C4C8C16D4Q8SD16M4(2)C8.C4M5(2)C8.C8
kernelC82C16C82C4⋊C16C4×C8C2×C8C8C2×C8C2×C8C8C2×C4C4C4C2
# reps11248161142448

Matrix representation of C82C16 in GL4(𝔽17) generated by

01600
1000
00150
0049
,
01400
14000
00715
00010
G:=sub<GL(4,GF(17))| [0,1,0,0,16,0,0,0,0,0,15,4,0,0,0,9],[0,14,0,0,14,0,0,0,0,0,7,0,0,0,15,10] >;

C82C16 in GAP, Magma, Sage, TeX

C_8\rtimes_2C_{16}
% in TeX

G:=Group("C8:2C16");
// GroupNames label

G:=SmallGroup(128,99);
// by ID

G=gap.SmallGroup(128,99);
# by ID

G:=PCGroup([7,-2,2,-2,2,-2,2,-2,56,85,36,422,100,136,124]);
// Polycyclic

G:=Group<a,b|a^8=b^16=1,b*a*b^-1=a^3>;
// generators/relations

Export

Subgroup lattice of C82C16 in TeX

׿
×
𝔽