Copied to
clipboard

G = C16.C8order 128 = 27

1st non-split extension by C16 of C8 acting via C8/C2=C4

p-group, metacyclic, nilpotent (class 4), monomial

Aliases: C16.1C8, C8.31SD16, C42.14Q8, C8.13M4(2), C4.4(C4⋊C8), C8.20(C2×C8), (C2×C16).2C4, (C2×C8).181D4, C165C4.4C2, C2.4(C82C8), C8.C8.3C2, C4.14(C4.Q8), (C4×C8).136C22, C22.3(C8.C4), (C2×C8).224(C2×C4), (C2×C4).100(C4⋊C4), SmallGroup(128,101)

Series: Derived Chief Lower central Upper central Jennings

C1C8 — C16.C8
C1C2C4C2×C4C2×C8C4×C8C165C4 — C16.C8
C1C2C4C8 — C16.C8
C1C4C2×C8C4×C8 — C16.C8
C1C2C2C2C2C2×C4C2×C4C4×C8 — C16.C8

Generators and relations for C16.C8
 G = < a,b | a16=1, b8=a8, bab-1=a3 >

2C2
4C4
2C2×C4
2C16
4C16
4C16
2M5(2)
2M5(2)

Smallest permutation representation of C16.C8
On 32 points
Generators in S32
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32)
(1 31 7 17 13 19 3 21 9 23 15 25 5 27 11 29)(2 26 16 20 14 30 12 24 10 18 8 28 6 22 4 32)

G:=sub<Sym(32)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32), (1,31,7,17,13,19,3,21,9,23,15,25,5,27,11,29)(2,26,16,20,14,30,12,24,10,18,8,28,6,22,4,32)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32), (1,31,7,17,13,19,3,21,9,23,15,25,5,27,11,29)(2,26,16,20,14,30,12,24,10,18,8,28,6,22,4,32) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32)], [(1,31,7,17,13,19,3,21,9,23,15,25,5,27,11,29),(2,26,16,20,14,30,12,24,10,18,8,28,6,22,4,32)]])

32 conjugacy classes

class 1 2A2B4A4B4C4D4E8A···8H16A···16H16I···16P
order122444448···816···1616···16
size112112442···24···48···8

32 irreducible representations

dim11111222224
type+++-+
imageC1C2C2C4C8Q8D4M4(2)SD16C8.C4C16.C8
kernelC16.C8C165C4C8.C8C2×C16C16C42C2×C8C8C8C22C1
# reps11248112444

Matrix representation of C16.C8 in GL4(𝔽17) generated by

01300
9000
0009
0010
,
0010
0001
9000
0800
G:=sub<GL(4,GF(17))| [0,9,0,0,13,0,0,0,0,0,0,1,0,0,9,0],[0,0,9,0,0,0,0,8,1,0,0,0,0,1,0,0] >;

C16.C8 in GAP, Magma, Sage, TeX

C_{16}.C_8
% in TeX

G:=Group("C16.C8");
// GroupNames label

G:=SmallGroup(128,101);
// by ID

G=gap.SmallGroup(128,101);
# by ID

G:=PCGroup([7,-2,2,-2,2,-2,2,-2,56,85,36,422,100,1018,136,2804,172,124]);
// Polycyclic

G:=Group<a,b|a^16=1,b^8=a^8,b*a*b^-1=a^3>;
// generators/relations

Export

Subgroup lattice of C16.C8 in TeX

׿
×
𝔽