extension | φ:Q→Aut N | d | ρ | Label | ID |
C16.(C2xC4) = Q32:C4 | φ: C2xC4/C1 → C2xC4 ⊆ Aut C16 | 32 | 8- | C16.(C2xC4) | 128,912 |
C16.2(C2xC4) = M5(2):3C4 | φ: C2xC4/C2 → C4 ⊆ Aut C16 | 32 | 4 | C16.2(C2xC4) | 128,887 |
C16.3(C2xC4) = C8.23C42 | φ: C2xC4/C2 → C4 ⊆ Aut C16 | 32 | 4 | C16.3(C2xC4) | 128,842 |
C16.4(C2xC4) = D16:3C4 | φ: C2xC4/C2 → C22 ⊆ Aut C16 | 32 | 4 | C16.4(C2xC4) | 128,150 |
C16.5(C2xC4) = M6(2):C2 | φ: C2xC4/C2 → C22 ⊆ Aut C16 | 32 | 4+ | C16.5(C2xC4) | 128,151 |
C16.6(C2xC4) = C16.18D4 | φ: C2xC4/C2 → C22 ⊆ Aut C16 | 64 | 4- | C16.6(C2xC4) | 128,152 |
C16.7(C2xC4) = M5(2).1C4 | φ: C2xC4/C2 → C22 ⊆ Aut C16 | 32 | 4 | C16.7(C2xC4) | 128,893 |
C16.8(C2xC4) = Q32:4C4 | φ: C2xC4/C2 → C22 ⊆ Aut C16 | 128 | | C16.8(C2xC4) | 128,908 |
C16.9(C2xC4) = D16:5C4 | φ: C2xC4/C2 → C22 ⊆ Aut C16 | 32 | 4 | C16.9(C2xC4) | 128,911 |
C16.10(C2xC4) = D16:2C4 | φ: C2xC4/C4 → C2 ⊆ Aut C16 | 64 | | C16.10(C2xC4) | 128,147 |
C16.11(C2xC4) = Q32:2C4 | φ: C2xC4/C4 → C2 ⊆ Aut C16 | 128 | | C16.11(C2xC4) | 128,148 |
C16.12(C2xC4) = D16.C4 | φ: C2xC4/C4 → C2 ⊆ Aut C16 | 64 | 2 | C16.12(C2xC4) | 128,149 |
C16.13(C2xC4) = C4xQ32 | φ: C2xC4/C4 → C2 ⊆ Aut C16 | 128 | | C16.13(C2xC4) | 128,906 |
C16.14(C2xC4) = C8oD16 | φ: C2xC4/C4 → C2 ⊆ Aut C16 | 32 | 2 | C16.14(C2xC4) | 128,910 |
C16.15(C2xC4) = D4oC32 | φ: C2xC4/C4 → C2 ⊆ Aut C16 | 64 | 2 | C16.15(C2xC4) | 128,990 |
C16.16(C2xC4) = C32:3C4 | φ: C2xC4/C22 → C2 ⊆ Aut C16 | 128 | | C16.16(C2xC4) | 128,155 |
C16.17(C2xC4) = C32:4C4 | φ: C2xC4/C22 → C2 ⊆ Aut C16 | 128 | | C16.17(C2xC4) | 128,156 |
C16.18(C2xC4) = C32.C4 | φ: C2xC4/C22 → C2 ⊆ Aut C16 | 64 | 2 | C16.18(C2xC4) | 128,157 |
C16.19(C2xC4) = C8.Q16 | φ: C2xC4/C22 → C2 ⊆ Aut C16 | 32 | 4 | C16.19(C2xC4) | 128,158 |
C16.20(C2xC4) = C23.25D8 | φ: C2xC4/C22 → C2 ⊆ Aut C16 | 64 | | C16.20(C2xC4) | 128,890 |
C16.21(C2xC4) = C2xC8.4Q8 | φ: C2xC4/C22 → C2 ⊆ Aut C16 | 64 | | C16.21(C2xC4) | 128,892 |
C16.22(C2xC4) = C32:C4 | φ: C2xC4/C22 → C2 ⊆ Aut C16 | 32 | 4 | C16.22(C2xC4) | 128,130 |
C16.23(C2xC4) = C2xM6(2) | φ: C2xC4/C22 → C2 ⊆ Aut C16 | 64 | | C16.23(C2xC4) | 128,989 |
C16.24(C2xC4) = C32:5C4 | central extension (φ=1) | 128 | | C16.24(C2xC4) | 128,129 |
C16.25(C2xC4) = M7(2) | central extension (φ=1) | 64 | 2 | C16.25(C2xC4) | 128,160 |
C16.26(C2xC4) = C16o2M5(2) | central extension (φ=1) | 64 | | C16.26(C2xC4) | 128,840 |