p-group, metabelian, nilpotent (class 4), monomial
Aliases: C4.10D16, C8.13Q16, C8.24SD16, C4.12SD32, C42.39D4, C4⋊C16.5C2, C8⋊1C8.3C2, C2.D8.4C4, (C2×C4).121D8, (C2×C8).335D4, C8⋊2Q8.1C2, (C4×C8).35C22, (C2×C4).19SD16, C2.5(C2.D16), C4.2(Q8⋊C4), C2.5(C8.17D4), C4.2(C4.10D4), C2.4(C4.10D8), C22.63(D4⋊C4), (C2×C8).25(C2×C4), (C2×C4).225(C22⋊C4), SmallGroup(128,96)
Series: Derived ►Chief ►Lower central ►Upper central ►Jennings
Generators and relations for C4.10D16
G = < a,b,c | a4=b16=1, c2=bab-1=a-1, ac=ca, cbc-1=ab-1 >
Character table of C4.10D16
class | 1 | 2A | 2B | 2C | 4A | 4B | 4C | 4D | 4E | 4F | 4G | 8A | 8B | 8C | 8D | 8E | 8F | 8G | 8H | 8I | 8J | 16A | 16B | 16C | 16D | 16E | 16F | 16G | 16H | |
size | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 4 | 16 | 16 | 2 | 2 | 2 | 2 | 4 | 4 | 8 | 8 | 8 | 8 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ3 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ4 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | linear of order 2 |
ρ5 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | 1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | i | i | -i | -i | i | -i | -i | i | i | -i | i | -i | linear of order 4 |
ρ6 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | i | i | -i | -i | -i | i | i | -i | -i | i | -i | i | linear of order 4 |
ρ7 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | -i | -i | i | i | i | -i | -i | i | i | -i | i | -i | linear of order 4 |
ρ8 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | 1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | -i | -i | i | i | -i | i | i | -i | -i | i | -i | i | linear of order 4 |
ρ9 | 2 | 2 | 2 | 2 | -2 | -2 | 2 | 2 | -2 | 0 | 0 | 2 | 2 | 2 | 2 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ10 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 0 | 0 | -2 | -2 | -2 | -2 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ11 | 2 | 2 | -2 | -2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | √2 | -√2 | √2 | -√2 | √2 | -√2 | 0 | 0 | 0 | 0 | ζ1615-ζ169 | ζ165-ζ163 | -ζ1615+ζ169 | ζ165-ζ163 | -ζ1615+ζ169 | ζ1615-ζ169 | -ζ165+ζ163 | -ζ165+ζ163 | orthogonal lifted from D16 |
ρ12 | 2 | 2 | -2 | -2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | -√2 | √2 | -√2 | √2 | -√2 | √2 | 0 | 0 | 0 | 0 | -ζ165+ζ163 | ζ1615-ζ169 | ζ165-ζ163 | ζ1615-ζ169 | ζ165-ζ163 | -ζ165+ζ163 | -ζ1615+ζ169 | -ζ1615+ζ169 | orthogonal lifted from D16 |
ρ13 | 2 | 2 | 2 | 2 | 2 | 2 | -2 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | √2 | -√2 | √2 | -√2 | √2 | √2 | -√2 | -√2 | orthogonal lifted from D8 |
ρ14 | 2 | 2 | 2 | 2 | 2 | 2 | -2 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -√2 | √2 | -√2 | √2 | -√2 | -√2 | √2 | √2 | orthogonal lifted from D8 |
ρ15 | 2 | 2 | -2 | -2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | -√2 | √2 | -√2 | √2 | -√2 | √2 | 0 | 0 | 0 | 0 | ζ165-ζ163 | -ζ1615+ζ169 | -ζ165+ζ163 | -ζ1615+ζ169 | -ζ165+ζ163 | ζ165-ζ163 | ζ1615-ζ169 | ζ1615-ζ169 | orthogonal lifted from D16 |
ρ16 | 2 | 2 | -2 | -2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | √2 | -√2 | √2 | -√2 | √2 | -√2 | 0 | 0 | 0 | 0 | -ζ1615+ζ169 | -ζ165+ζ163 | ζ1615-ζ169 | -ζ165+ζ163 | ζ1615-ζ169 | -ζ1615+ζ169 | ζ165-ζ163 | ζ165-ζ163 | orthogonal lifted from D16 |
ρ17 | 2 | -2 | -2 | 2 | 0 | 0 | 2 | -2 | 0 | 0 | 0 | 2 | 2 | -2 | -2 | 0 | 0 | √2 | -√2 | √2 | -√2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | symplectic lifted from Q16, Schur index 2 |
ρ18 | 2 | -2 | -2 | 2 | 0 | 0 | 2 | -2 | 0 | 0 | 0 | 2 | 2 | -2 | -2 | 0 | 0 | -√2 | √2 | -√2 | √2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | symplectic lifted from Q16, Schur index 2 |
ρ19 | 2 | 2 | 2 | 2 | -2 | -2 | -2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -√-2 | -√-2 | √-2 | √-2 | -√-2 | √-2 | √-2 | -√-2 | complex lifted from SD16 |
ρ20 | 2 | -2 | -2 | 2 | 0 | 0 | 2 | -2 | 0 | 0 | 0 | -2 | -2 | 2 | 2 | 0 | 0 | -√-2 | √-2 | √-2 | -√-2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from SD16 |
ρ21 | 2 | -2 | -2 | 2 | 0 | 0 | 2 | -2 | 0 | 0 | 0 | -2 | -2 | 2 | 2 | 0 | 0 | √-2 | -√-2 | -√-2 | √-2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from SD16 |
ρ22 | 2 | 2 | 2 | 2 | -2 | -2 | -2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | √-2 | √-2 | -√-2 | -√-2 | √-2 | -√-2 | -√-2 | √-2 | complex lifted from SD16 |
ρ23 | 2 | 2 | -2 | -2 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | -√2 | √2 | -√2 | √2 | √2 | -√2 | 0 | 0 | 0 | 0 | ζ1613+ζ1611 | ζ1615+ζ169 | ζ1613+ζ1611 | ζ167+ζ16 | ζ165+ζ163 | ζ165+ζ163 | ζ1615+ζ169 | ζ167+ζ16 | complex lifted from SD32 |
ρ24 | 2 | 2 | -2 | -2 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | √2 | -√2 | √2 | -√2 | -√2 | √2 | 0 | 0 | 0 | 0 | ζ1615+ζ169 | ζ165+ζ163 | ζ1615+ζ169 | ζ1613+ζ1611 | ζ167+ζ16 | ζ167+ζ16 | ζ165+ζ163 | ζ1613+ζ1611 | complex lifted from SD32 |
ρ25 | 2 | 2 | -2 | -2 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | -√2 | √2 | -√2 | √2 | √2 | -√2 | 0 | 0 | 0 | 0 | ζ165+ζ163 | ζ167+ζ16 | ζ165+ζ163 | ζ1615+ζ169 | ζ1613+ζ1611 | ζ1613+ζ1611 | ζ167+ζ16 | ζ1615+ζ169 | complex lifted from SD32 |
ρ26 | 2 | 2 | -2 | -2 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | √2 | -√2 | √2 | -√2 | -√2 | √2 | 0 | 0 | 0 | 0 | ζ167+ζ16 | ζ1613+ζ1611 | ζ167+ζ16 | ζ165+ζ163 | ζ1615+ζ169 | ζ1615+ζ169 | ζ1613+ζ1611 | ζ165+ζ163 | complex lifted from SD32 |
ρ27 | 4 | -4 | -4 | 4 | 0 | 0 | -4 | 4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | symplectic lifted from C4.10D4, Schur index 2 |
ρ28 | 4 | -4 | 4 | -4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -2√2 | 2√2 | 2√2 | -2√2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | symplectic lifted from C8.17D4, Schur index 2 |
ρ29 | 4 | -4 | 4 | -4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2√2 | -2√2 | -2√2 | 2√2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | symplectic lifted from C8.17D4, Schur index 2 |
(1 125 109 75)(2 76 110 126)(3 127 111 77)(4 78 112 128)(5 113 97 79)(6 80 98 114)(7 115 99 65)(8 66 100 116)(9 117 101 67)(10 68 102 118)(11 119 103 69)(12 70 104 120)(13 121 105 71)(14 72 106 122)(15 123 107 73)(16 74 108 124)(17 64 39 87)(18 88 40 49)(19 50 41 89)(20 90 42 51)(21 52 43 91)(22 92 44 53)(23 54 45 93)(24 94 46 55)(25 56 47 95)(26 96 48 57)(27 58 33 81)(28 82 34 59)(29 60 35 83)(30 84 36 61)(31 62 37 85)(32 86 38 63)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64)(65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96)(97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112)(113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128)
(1 21 75 91 109 43 125 52)(2 90 126 20 110 51 76 42)(3 19 77 89 111 41 127 50)(4 88 128 18 112 49 78 40)(5 17 79 87 97 39 113 64)(6 86 114 32 98 63 80 38)(7 31 65 85 99 37 115 62)(8 84 116 30 100 61 66 36)(9 29 67 83 101 35 117 60)(10 82 118 28 102 59 68 34)(11 27 69 81 103 33 119 58)(12 96 120 26 104 57 70 48)(13 25 71 95 105 47 121 56)(14 94 122 24 106 55 72 46)(15 23 73 93 107 45 123 54)(16 92 124 22 108 53 74 44)
G:=sub<Sym(128)| (1,125,109,75)(2,76,110,126)(3,127,111,77)(4,78,112,128)(5,113,97,79)(6,80,98,114)(7,115,99,65)(8,66,100,116)(9,117,101,67)(10,68,102,118)(11,119,103,69)(12,70,104,120)(13,121,105,71)(14,72,106,122)(15,123,107,73)(16,74,108,124)(17,64,39,87)(18,88,40,49)(19,50,41,89)(20,90,42,51)(21,52,43,91)(22,92,44,53)(23,54,45,93)(24,94,46,55)(25,56,47,95)(26,96,48,57)(27,58,33,81)(28,82,34,59)(29,60,35,83)(30,84,36,61)(31,62,37,85)(32,86,38,63), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128), (1,21,75,91,109,43,125,52)(2,90,126,20,110,51,76,42)(3,19,77,89,111,41,127,50)(4,88,128,18,112,49,78,40)(5,17,79,87,97,39,113,64)(6,86,114,32,98,63,80,38)(7,31,65,85,99,37,115,62)(8,84,116,30,100,61,66,36)(9,29,67,83,101,35,117,60)(10,82,118,28,102,59,68,34)(11,27,69,81,103,33,119,58)(12,96,120,26,104,57,70,48)(13,25,71,95,105,47,121,56)(14,94,122,24,106,55,72,46)(15,23,73,93,107,45,123,54)(16,92,124,22,108,53,74,44)>;
G:=Group( (1,125,109,75)(2,76,110,126)(3,127,111,77)(4,78,112,128)(5,113,97,79)(6,80,98,114)(7,115,99,65)(8,66,100,116)(9,117,101,67)(10,68,102,118)(11,119,103,69)(12,70,104,120)(13,121,105,71)(14,72,106,122)(15,123,107,73)(16,74,108,124)(17,64,39,87)(18,88,40,49)(19,50,41,89)(20,90,42,51)(21,52,43,91)(22,92,44,53)(23,54,45,93)(24,94,46,55)(25,56,47,95)(26,96,48,57)(27,58,33,81)(28,82,34,59)(29,60,35,83)(30,84,36,61)(31,62,37,85)(32,86,38,63), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128), (1,21,75,91,109,43,125,52)(2,90,126,20,110,51,76,42)(3,19,77,89,111,41,127,50)(4,88,128,18,112,49,78,40)(5,17,79,87,97,39,113,64)(6,86,114,32,98,63,80,38)(7,31,65,85,99,37,115,62)(8,84,116,30,100,61,66,36)(9,29,67,83,101,35,117,60)(10,82,118,28,102,59,68,34)(11,27,69,81,103,33,119,58)(12,96,120,26,104,57,70,48)(13,25,71,95,105,47,121,56)(14,94,122,24,106,55,72,46)(15,23,73,93,107,45,123,54)(16,92,124,22,108,53,74,44) );
G=PermutationGroup([[(1,125,109,75),(2,76,110,126),(3,127,111,77),(4,78,112,128),(5,113,97,79),(6,80,98,114),(7,115,99,65),(8,66,100,116),(9,117,101,67),(10,68,102,118),(11,119,103,69),(12,70,104,120),(13,121,105,71),(14,72,106,122),(15,123,107,73),(16,74,108,124),(17,64,39,87),(18,88,40,49),(19,50,41,89),(20,90,42,51),(21,52,43,91),(22,92,44,53),(23,54,45,93),(24,94,46,55),(25,56,47,95),(26,96,48,57),(27,58,33,81),(28,82,34,59),(29,60,35,83),(30,84,36,61),(31,62,37,85),(32,86,38,63)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64),(65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96),(97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112),(113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128)], [(1,21,75,91,109,43,125,52),(2,90,126,20,110,51,76,42),(3,19,77,89,111,41,127,50),(4,88,128,18,112,49,78,40),(5,17,79,87,97,39,113,64),(6,86,114,32,98,63,80,38),(7,31,65,85,99,37,115,62),(8,84,116,30,100,61,66,36),(9,29,67,83,101,35,117,60),(10,82,118,28,102,59,68,34),(11,27,69,81,103,33,119,58),(12,96,120,26,104,57,70,48),(13,25,71,95,105,47,121,56),(14,94,122,24,106,55,72,46),(15,23,73,93,107,45,123,54),(16,92,124,22,108,53,74,44)]])
Matrix representation of C4.10D16 ►in GL4(𝔽17) generated by
1 | 0 | 0 | 0 |
0 | 1 | 0 | 0 |
0 | 0 | 0 | 1 |
0 | 0 | 16 | 0 |
6 | 4 | 0 | 0 |
13 | 6 | 0 | 0 |
0 | 0 | 13 | 0 |
0 | 0 | 0 | 4 |
4 | 6 | 0 | 0 |
6 | 13 | 0 | 0 |
0 | 0 | 14 | 3 |
0 | 0 | 14 | 14 |
G:=sub<GL(4,GF(17))| [1,0,0,0,0,1,0,0,0,0,0,16,0,0,1,0],[6,13,0,0,4,6,0,0,0,0,13,0,0,0,0,4],[4,6,0,0,6,13,0,0,0,0,14,14,0,0,3,14] >;
C4.10D16 in GAP, Magma, Sage, TeX
C_4._{10}D_{16}
% in TeX
G:=Group("C4.10D16");
// GroupNames label
G:=SmallGroup(128,96);
// by ID
G=gap.SmallGroup(128,96);
# by ID
G:=PCGroup([7,-2,2,-2,2,-2,2,-2,56,85,120,422,387,520,794,416,2028,124]);
// Polycyclic
G:=Group<a,b,c|a^4=b^16=1,c^2=b*a*b^-1=a^-1,a*c=c*a,c*b*c^-1=a*b^-1>;
// generators/relations
Export
Subgroup lattice of C4.10D16 in TeX
Character table of C4.10D16 in TeX