Extensions 1→N→G→Q→1 with N=C4 and Q=D16

Direct product G=N×Q with N=C4 and Q=D16
dρLabelID
C4×D1664C4xD16128,904

Semidirect products G=N:Q with N=C4 and Q=D16
extensionφ:Q→Aut NdρLabelID
C41D16 = C4⋊D16φ: D16/C16C2 ⊆ Aut C464C4:1D16128,978
C42D16 = D82D4φ: D16/D8C2 ⊆ Aut C464C4:2D16128,938

Non-split extensions G=N.Q with N=C4 and Q=D16
extensionφ:Q→Aut NdρLabelID
C4.1D16 = D64φ: D16/C16C2 ⊆ Aut C4642+C4.1D16128,161
C4.2D16 = SD128φ: D16/C16C2 ⊆ Aut C4642C4.2D16128,162
C4.3D16 = Q128φ: D16/C16C2 ⊆ Aut C41282-C4.3D16128,163
C4.4D16 = C4.4D16φ: D16/C16C2 ⊆ Aut C464C4.4D16128,972
C4.5D16 = C162Q8φ: D16/C16C2 ⊆ Aut C4128C4.5D16128,984
C4.6D16 = C2×D32φ: D16/C16C2 ⊆ Aut C464C4.6D16128,991
C4.7D16 = C2×SD64φ: D16/C16C2 ⊆ Aut C464C4.7D16128,992
C4.8D16 = C2×Q64φ: D16/C16C2 ⊆ Aut C4128C4.8D16128,993
C4.9D16 = C4.D16φ: D16/D8C2 ⊆ Aut C464C4.9D16128,93
C4.10D16 = C4.10D16φ: D16/D8C2 ⊆ Aut C4128C4.10D16128,96
C4.11D16 = M6(2)⋊C2φ: D16/D8C2 ⊆ Aut C4324+C4.11D16128,151
C4.12D16 = C16.18D4φ: D16/D8C2 ⊆ Aut C4644-C4.12D16128,152
C4.13D16 = D81Q8φ: D16/D8C2 ⊆ Aut C464C4.13D16128,956
C4.14D16 = C32⋊C22φ: D16/D8C2 ⊆ Aut C4324+C4.14D16128,995
C4.15D16 = Q64⋊C2φ: D16/D8C2 ⊆ Aut C4644-C4.15D16128,996
C4.16D16 = C4.16D16central extension (φ=1)64C4.16D16128,63
C4.17D16 = C163C8central extension (φ=1)128C4.17D16128,103
C4.18D16 = D16.C4central extension (φ=1)642C4.18D16128,149
C4.19D16 = C32.C4central extension (φ=1)642C4.19D16128,157
C4.20D16 = C4○D32central extension (φ=1)642C4.20D16128,994

׿
×
𝔽