extension | φ:Q→Out N | d | ρ | Label | ID |
(C8×D4)⋊1C2 = C8×D8 | φ: C2/C1 → C2 ⊆ Out C8×D4 | 64 | | (C8xD4):1C2 | 128,307 |
(C8×D4)⋊2C2 = D8⋊5C8 | φ: C2/C1 → C2 ⊆ Out C8×D4 | 64 | | (C8xD4):2C2 | 128,312 |
(C8×D4)⋊3C2 = C42.691C23 | φ: C2/C1 → C2 ⊆ Out C8×D4 | 32 | | (C8xD4):3C2 | 128,1704 |
(C8×D4)⋊4C2 = C42.697C23 | φ: C2/C1 → C2 ⊆ Out C8×D4 | 64 | | (C8xD4):4C2 | 128,1720 |
(C8×D4)⋊5C2 = C8⋊7D8 | φ: C2/C1 → C2 ⊆ Out C8×D4 | 64 | | (C8xD4):5C2 | 128,399 |
(C8×D4)⋊6C2 = D4.2D8 | φ: C2/C1 → C2 ⊆ Out C8×D4 | 64 | | (C8xD4):6C2 | 128,413 |
(C8×D4)⋊7C2 = D4×D8 | φ: C2/C1 → C2 ⊆ Out C8×D4 | 32 | | (C8xD4):7C2 | 128,2011 |
(C8×D4)⋊8C2 = D4⋊4D8 | φ: C2/C1 → C2 ⊆ Out C8×D4 | 32 | | (C8xD4):8C2 | 128,2026 |
(C8×D4)⋊9C2 = D4⋊5D8 | φ: C2/C1 → C2 ⊆ Out C8×D4 | 64 | | (C8xD4):9C2 | 128,2066 |
(C8×D4)⋊10C2 = D8⋊12D4 | φ: C2/C1 → C2 ⊆ Out C8×D4 | 32 | | (C8xD4):10C2 | 128,2012 |
(C8×D4)⋊11C2 = SD16⋊10D4 | φ: C2/C1 → C2 ⊆ Out C8×D4 | 32 | | (C8xD4):11C2 | 128,2014 |
(C8×D4)⋊12C2 = D8⋊13D4 | φ: C2/C1 → C2 ⊆ Out C8×D4 | 64 | | (C8xD4):12C2 | 128,2015 |
(C8×D4)⋊13C2 = SD16⋊11D4 | φ: C2/C1 → C2 ⊆ Out C8×D4 | 64 | | (C8xD4):13C2 | 128,2016 |
(C8×D4)⋊14C2 = Q16⋊12D4 | φ: C2/C1 → C2 ⊆ Out C8×D4 | 64 | | (C8xD4):14C2 | 128,2017 |
(C8×D4)⋊15C2 = Q16⋊13D4 | φ: C2/C1 → C2 ⊆ Out C8×D4 | 64 | | (C8xD4):15C2 | 128,2019 |
(C8×D4)⋊16C2 = C42.461C23 | φ: C2/C1 → C2 ⊆ Out C8×D4 | 32 | | (C8xD4):16C2 | 128,2028 |
(C8×D4)⋊17C2 = C42.462C23 | φ: C2/C1 → C2 ⊆ Out C8×D4 | 32 | | (C8xD4):17C2 | 128,2029 |
(C8×D4)⋊18C2 = C42.465C23 | φ: C2/C1 → C2 ⊆ Out C8×D4 | 64 | | (C8xD4):18C2 | 128,2032 |
(C8×D4)⋊19C2 = C42.466C23 | φ: C2/C1 → C2 ⊆ Out C8×D4 | 64 | | (C8xD4):19C2 | 128,2033 |
(C8×D4)⋊20C2 = C42.467C23 | φ: C2/C1 → C2 ⊆ Out C8×D4 | 64 | | (C8xD4):20C2 | 128,2034 |
(C8×D4)⋊21C2 = C42.468C23 | φ: C2/C1 → C2 ⊆ Out C8×D4 | 64 | | (C8xD4):21C2 | 128,2035 |
(C8×D4)⋊22C2 = C42.469C23 | φ: C2/C1 → C2 ⊆ Out C8×D4 | 64 | | (C8xD4):22C2 | 128,2036 |
(C8×D4)⋊23C2 = C42.470C23 | φ: C2/C1 → C2 ⊆ Out C8×D4 | 64 | | (C8xD4):23C2 | 128,2037 |
(C8×D4)⋊24C2 = C42.486C23 | φ: C2/C1 → C2 ⊆ Out C8×D4 | 64 | | (C8xD4):24C2 | 128,2069 |
(C8×D4)⋊25C2 = C42.488C23 | φ: C2/C1 → C2 ⊆ Out C8×D4 | 64 | | (C8xD4):25C2 | 128,2071 |
(C8×D4)⋊26C2 = C42.489C23 | φ: C2/C1 → C2 ⊆ Out C8×D4 | 64 | | (C8xD4):26C2 | 128,2072 |
(C8×D4)⋊27C2 = C42.490C23 | φ: C2/C1 → C2 ⊆ Out C8×D4 | 64 | | (C8xD4):27C2 | 128,2073 |
(C8×D4)⋊28C2 = C8⋊8D8 | φ: C2/C1 → C2 ⊆ Out C8×D4 | 64 | | (C8xD4):28C2 | 128,397 |
(C8×D4)⋊29C2 = D4.2SD16 | φ: C2/C1 → C2 ⊆ Out C8×D4 | 64 | | (C8xD4):29C2 | 128,409 |
(C8×D4)⋊30C2 = D4×SD16 | φ: C2/C1 → C2 ⊆ Out C8×D4 | 32 | | (C8xD4):30C2 | 128,2013 |
(C8×D4)⋊31C2 = D4⋊7SD16 | φ: C2/C1 → C2 ⊆ Out C8×D4 | 32 | | (C8xD4):31C2 | 128,2027 |
(C8×D4)⋊32C2 = D4⋊8SD16 | φ: C2/C1 → C2 ⊆ Out C8×D4 | 64 | | (C8xD4):32C2 | 128,2030 |
(C8×D4)⋊33C2 = D4⋊9SD16 | φ: C2/C1 → C2 ⊆ Out C8×D4 | 64 | | (C8xD4):33C2 | 128,2067 |
(C8×D4)⋊34C2 = C8⋊9D8 | φ: C2/C1 → C2 ⊆ Out C8×D4 | 64 | | (C8xD4):34C2 | 128,313 |
(C8×D4)⋊35C2 = D4⋊2M4(2) | φ: C2/C1 → C2 ⊆ Out C8×D4 | 64 | | (C8xD4):35C2 | 128,318 |
(C8×D4)⋊36C2 = C42.264C23 | φ: C2/C1 → C2 ⊆ Out C8×D4 | 32 | | (C8xD4):36C2 | 128,1661 |
(C8×D4)⋊37C2 = C42.681C23 | φ: C2/C1 → C2 ⊆ Out C8×D4 | 64 | | (C8xD4):37C2 | 128,1663 |
(C8×D4)⋊38C2 = M4(2)⋊22D4 | φ: C2/C1 → C2 ⊆ Out C8×D4 | 32 | | (C8xD4):38C2 | 128,1665 |
(C8×D4)⋊39C2 = D4×M4(2) | φ: C2/C1 → C2 ⊆ Out C8×D4 | 32 | | (C8xD4):39C2 | 128,1666 |
(C8×D4)⋊40C2 = M4(2)⋊23D4 | φ: C2/C1 → C2 ⊆ Out C8×D4 | 64 | | (C8xD4):40C2 | 128,1667 |
(C8×D4)⋊41C2 = C42.291C23 | φ: C2/C1 → C2 ⊆ Out C8×D4 | 64 | | (C8xD4):41C2 | 128,1698 |
(C8×D4)⋊42C2 = C42.293C23 | φ: C2/C1 → C2 ⊆ Out C8×D4 | 64 | | (C8xD4):42C2 | 128,1700 |
(C8×D4)⋊43C2 = C42.294C23 | φ: C2/C1 → C2 ⊆ Out C8×D4 | 64 | | (C8xD4):43C2 | 128,1701 |
(C8×D4)⋊44C2 = D4⋊6M4(2) | φ: C2/C1 → C2 ⊆ Out C8×D4 | 64 | | (C8xD4):44C2 | 128,1702 |
(C8×D4)⋊45C2 = D4⋊7M4(2) | φ: C2/C1 → C2 ⊆ Out C8×D4 | 32 | | (C8xD4):45C2 | 128,1706 |
(C8×D4)⋊46C2 = C42.297C23 | φ: C2/C1 → C2 ⊆ Out C8×D4 | 32 | | (C8xD4):46C2 | 128,1708 |
(C8×D4)⋊47C2 = C42.298C23 | φ: C2/C1 → C2 ⊆ Out C8×D4 | 32 | | (C8xD4):47C2 | 128,1709 |
(C8×D4)⋊48C2 = C42.694C23 | φ: C2/C1 → C2 ⊆ Out C8×D4 | 64 | | (C8xD4):48C2 | 128,1711 |
(C8×D4)⋊49C2 = C42.301C23 | φ: C2/C1 → C2 ⊆ Out C8×D4 | 64 | | (C8xD4):49C2 | 128,1713 |
(C8×D4)⋊50C2 = D4⋊8M4(2) | φ: C2/C1 → C2 ⊆ Out C8×D4 | 64 | | (C8xD4):50C2 | 128,1722 |
(C8×D4)⋊51C2 = C42.307C23 | φ: C2/C1 → C2 ⊆ Out C8×D4 | 64 | | (C8xD4):51C2 | 128,1724 |
(C8×D4)⋊52C2 = C42.308C23 | φ: C2/C1 → C2 ⊆ Out C8×D4 | 64 | | (C8xD4):52C2 | 128,1725 |
(C8×D4)⋊53C2 = C42.309C23 | φ: C2/C1 → C2 ⊆ Out C8×D4 | 64 | | (C8xD4):53C2 | 128,1726 |
(C8×D4)⋊54C2 = C8×C4○D4 | φ: trivial image | 64 | | (C8xD4):54C2 | 128,1696 |
extension | φ:Q→Out N | d | ρ | Label | ID |
(C8×D4).1C2 = D4⋊C16 | φ: C2/C1 → C2 ⊆ Out C8×D4 | 64 | | (C8xD4).1C2 | 128,61 |
(C8×D4).2C2 = C8×SD16 | φ: C2/C1 → C2 ⊆ Out C8×D4 | 64 | | (C8xD4).2C2 | 128,308 |
(C8×D4).3C2 = SD16⋊C8 | φ: C2/C1 → C2 ⊆ Out C8×D4 | 64 | | (C8xD4).3C2 | 128,310 |
(C8×D4).4C2 = C8.28D8 | φ: C2/C1 → C2 ⊆ Out C8×D4 | 64 | | (C8xD4).4C2 | 128,401 |
(C8×D4).5C2 = C8⋊10SD16 | φ: C2/C1 → C2 ⊆ Out C8×D4 | 64 | | (C8xD4).5C2 | 128,405 |
(C8×D4).6C2 = D4.1Q16 | φ: C2/C1 → C2 ⊆ Out C8×D4 | 64 | | (C8xD4).6C2 | 128,407 |
(C8×D4).7C2 = D4.Q16 | φ: C2/C1 → C2 ⊆ Out C8×D4 | 64 | | (C8xD4).7C2 | 128,415 |
(C8×D4).8C2 = D4×Q16 | φ: C2/C1 → C2 ⊆ Out C8×D4 | 64 | | (C8xD4).8C2 | 128,2018 |
(C8×D4).9C2 = D4⋊5Q16 | φ: C2/C1 → C2 ⊆ Out C8×D4 | 64 | | (C8xD4).9C2 | 128,2031 |
(C8×D4).10C2 = D4⋊6Q16 | φ: C2/C1 → C2 ⊆ Out C8×D4 | 64 | | (C8xD4).10C2 | 128,2070 |
(C8×D4).11C2 = C42.485C23 | φ: C2/C1 → C2 ⊆ Out C8×D4 | 64 | | (C8xD4).11C2 | 128,2068 |
(C8×D4).12C2 = C42.491C23 | φ: C2/C1 → C2 ⊆ Out C8×D4 | 64 | | (C8xD4).12C2 | 128,2074 |
(C8×D4).13C2 = C8⋊11SD16 | φ: C2/C1 → C2 ⊆ Out C8×D4 | 64 | | (C8xD4).13C2 | 128,403 |
(C8×D4).14C2 = D4.3SD16 | φ: C2/C1 → C2 ⊆ Out C8×D4 | 64 | | (C8xD4).14C2 | 128,411 |
(C8×D4).15C2 = C8⋊12SD16 | φ: C2/C1 → C2 ⊆ Out C8×D4 | 64 | | (C8xD4).15C2 | 128,314 |
(C8×D4).16C2 = D4.M4(2) | φ: C2/C1 → C2 ⊆ Out C8×D4 | 64 | | (C8xD4).16C2 | 128,317 |
(C8×D4).17C2 = C16⋊9D4 | φ: C2/C1 → C2 ⊆ Out C8×D4 | 64 | | (C8xD4).17C2 | 128,900 |
(C8×D4).18C2 = C16⋊6D4 | φ: C2/C1 → C2 ⊆ Out C8×D4 | 64 | | (C8xD4).18C2 | 128,901 |
(C8×D4).19C2 = D4×C16 | φ: trivial image | 64 | | (C8xD4).19C2 | 128,899 |