Extensions 1→N→G→Q→1 with N=C4 and Q=M5(2)

Direct product G=N×Q with N=C4 and Q=M5(2)
dρLabelID
C4×M5(2)64C4xM5(2)128,839

Semidirect products G=N:Q with N=C4 and Q=M5(2)
extensionφ:Q→Aut NdρLabelID
C41M5(2) = C166D4φ: M5(2)/C16C2 ⊆ Aut C464C4:1M5(2)128,901
C42M5(2) = C4⋊M5(2)φ: M5(2)/C2×C8C2 ⊆ Aut C464C4:2M5(2)128,882

Non-split extensions G=N.Q with N=C4 and Q=M5(2)
extensionφ:Q→Aut NdρLabelID
C4.1M5(2) = D4⋊C16φ: M5(2)/C16C2 ⊆ Aut C464C4.1M5(2)128,61
C4.2M5(2) = Q8⋊C16φ: M5(2)/C16C2 ⊆ Aut C4128C4.2M5(2)128,69
C4.3M5(2) = C164Q8φ: M5(2)/C16C2 ⊆ Aut C4128C4.3M5(2)128,915
C4.4M5(2) = C82C16φ: M5(2)/C2×C8C2 ⊆ Aut C4128C4.4M5(2)128,99
C4.5M5(2) = C8.36D8φ: M5(2)/C2×C8C2 ⊆ Aut C4128C4.5M5(2)128,102
C4.6M5(2) = C32⋊C4φ: M5(2)/C2×C8C2 ⊆ Aut C4324C4.6M5(2)128,130
C4.7M5(2) = C23.C16φ: M5(2)/C2×C8C2 ⊆ Aut C4324C4.7M5(2)128,132
C4.8M5(2) = C42.6C8φ: M5(2)/C2×C8C2 ⊆ Aut C464C4.8M5(2)128,895
C4.9M5(2) = C165C8central extension (φ=1)128C4.9M5(2)128,43
C4.10M5(2) = C8⋊C16central extension (φ=1)128C4.10M5(2)128,44
C4.11M5(2) = C22⋊C32central extension (φ=1)64C4.11M5(2)128,131
C4.12M5(2) = C4⋊C32central extension (φ=1)128C4.12M5(2)128,153
C4.13M5(2) = C42.13C8central extension (φ=1)64C4.13M5(2)128,894

׿
×
𝔽