Copied to
clipboard

G = 2+ 1+4.2C4order 128 = 27

The non-split extension by 2+ 1+4 of C4 acting via C4/C2=C2

p-group, metabelian, nilpotent (class 3), monomial

Aliases: 2+ 1+4.2C4, (C2×D4).68D4, (C2×Q8).65D4, C4.55C22≀C2, (C22×C8)⋊3C22, (C22×C4).57D4, C23.4(C22×C4), C23.5(C22⋊C4), C2.C25.1C2, C2.16(C243C4), (C2×M4(2))⋊38C22, (C22×C4).656C23, M4(2).8C227C2, (C2×C4).31(C2×D4), (C2×D4).63(C2×C4), (C2×C4).9(C22⋊C4), (C2×C4○D4).4C22, (C22×C8)⋊C220C2, C22.10(C2×C22⋊C4), SmallGroup(128,523)

Series: Derived Chief Lower central Upper central Jennings

C1C23 — 2+ 1+4.2C4
C1C2C4C2×C4C22×C4C2×C4○D4C2.C25 — 2+ 1+4.2C4
C1C2C23 — 2+ 1+4.2C4
C1C4C22×C4 — 2+ 1+4.2C4
C1C2C2C22×C4 — 2+ 1+4.2C4

Generators and relations for 2+ 1+4.2C4
 G = < a,b,c,d,e | a4=b2=d2=1, c2=e4=a2, bab=a-1, ac=ca, ad=da, eae-1=a-1cd, ece-1=bc=cb, bd=db, be=eb, dcd=a2c, ede-1=a2bd >

Subgroups: 540 in 274 conjugacy classes, 66 normal (8 characteristic)
C1, C2, C2, C4, C4, C4, C22, C22, C8, C2×C4, C2×C4, D4, Q8, C23, C23, C23, C2×C8, M4(2), C22×C4, C22×C4, C22×C4, C2×D4, C2×D4, C2×Q8, C2×Q8, C4○D4, C22⋊C8, C4.D4, C4.10D4, C22×C8, C2×M4(2), C2×C4○D4, C2×C4○D4, 2+ 1+4, 2+ 1+4, 2- 1+4, (C22×C8)⋊C2, M4(2).8C22, C2.C25, 2+ 1+4.2C4
Quotients: C1, C2, C4, C22, C2×C4, D4, C23, C22⋊C4, C22×C4, C2×D4, C2×C22⋊C4, C22≀C2, C243C4, 2+ 1+4.2C4

Smallest permutation representation of 2+ 1+4.2C4
On 32 points
Generators in S32
(1 25 5 29)(2 10 6 14)(3 31 7 27)(4 16 8 12)(9 23 13 19)(11 21 15 17)(18 28 22 32)(20 26 24 30)
(1 31)(2 32)(3 25)(4 26)(5 27)(6 28)(7 29)(8 30)(9 21)(10 22)(11 23)(12 24)(13 17)(14 18)(15 19)(16 20)
(1 19 5 23)(2 16 6 12)(3 21 7 17)(4 10 8 14)(9 29 13 25)(11 31 15 27)(18 26 22 30)(20 28 24 32)
(2 28)(4 30)(6 32)(8 26)(9 13)(10 22)(11 15)(12 24)(14 18)(16 20)(17 21)(19 23)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)

G:=sub<Sym(32)| (1,25,5,29)(2,10,6,14)(3,31,7,27)(4,16,8,12)(9,23,13,19)(11,21,15,17)(18,28,22,32)(20,26,24,30), (1,31)(2,32)(3,25)(4,26)(5,27)(6,28)(7,29)(8,30)(9,21)(10,22)(11,23)(12,24)(13,17)(14,18)(15,19)(16,20), (1,19,5,23)(2,16,6,12)(3,21,7,17)(4,10,8,14)(9,29,13,25)(11,31,15,27)(18,26,22,30)(20,28,24,32), (2,28)(4,30)(6,32)(8,26)(9,13)(10,22)(11,15)(12,24)(14,18)(16,20)(17,21)(19,23), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)>;

G:=Group( (1,25,5,29)(2,10,6,14)(3,31,7,27)(4,16,8,12)(9,23,13,19)(11,21,15,17)(18,28,22,32)(20,26,24,30), (1,31)(2,32)(3,25)(4,26)(5,27)(6,28)(7,29)(8,30)(9,21)(10,22)(11,23)(12,24)(13,17)(14,18)(15,19)(16,20), (1,19,5,23)(2,16,6,12)(3,21,7,17)(4,10,8,14)(9,29,13,25)(11,31,15,27)(18,26,22,30)(20,28,24,32), (2,28)(4,30)(6,32)(8,26)(9,13)(10,22)(11,15)(12,24)(14,18)(16,20)(17,21)(19,23), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32) );

G=PermutationGroup([[(1,25,5,29),(2,10,6,14),(3,31,7,27),(4,16,8,12),(9,23,13,19),(11,21,15,17),(18,28,22,32),(20,26,24,30)], [(1,31),(2,32),(3,25),(4,26),(5,27),(6,28),(7,29),(8,30),(9,21),(10,22),(11,23),(12,24),(13,17),(14,18),(15,19),(16,20)], [(1,19,5,23),(2,16,6,12),(3,21,7,17),(4,10,8,14),(9,29,13,25),(11,31,15,27),(18,26,22,30),(20,28,24,32)], [(2,28),(4,30),(6,32),(8,26),(9,13),(10,22),(11,15),(12,24),(14,18),(16,20),(17,21),(19,23)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32)]])

32 conjugacy classes

class 1 2A2B2C2D2E···2J4A4B4C4D4E4F···4K8A8B8C8D8E···8J
order122222···2444444···488888···8
size112224···4112224···444448···8

32 irreducible representations

dim111112224
type+++++++
imageC1C2C2C2C4D4D4D42+ 1+4.2C4
kernel2+ 1+4.2C4(C22×C8)⋊C2M4(2).8C22C2.C252+ 1+4C22×C4C2×D4C2×Q8C1
# reps133186334

Matrix representation of 2+ 1+4.2C4 in GL4(𝔽17) generated by

00162
0001
11500
01600
,
4900
41300
0049
00413
,
00160
00016
1000
0100
,
13800
13400
0049
00413
,
14859
135414
12839
133412
G:=sub<GL(4,GF(17))| [0,0,1,0,0,0,15,16,16,0,0,0,2,1,0,0],[4,4,0,0,9,13,0,0,0,0,4,4,0,0,9,13],[0,0,1,0,0,0,0,1,16,0,0,0,0,16,0,0],[13,13,0,0,8,4,0,0,0,0,4,4,0,0,9,13],[14,13,12,13,8,5,8,3,5,4,3,4,9,14,9,12] >;

2+ 1+4.2C4 in GAP, Magma, Sage, TeX

2_+^{1+4}._2C_4
% in TeX

G:=Group("ES+(2,2).2C4");
// GroupNames label

G:=SmallGroup(128,523);
// by ID

G=gap.SmallGroup(128,523);
# by ID

G:=PCGroup([7,-2,2,2,-2,2,2,-2,224,141,422,2019,521,1411,2028,124]);
// Polycyclic

G:=Group<a,b,c,d,e|a^4=b^2=d^2=1,c^2=e^4=a^2,b*a*b=a^-1,a*c=c*a,a*d=d*a,e*a*e^-1=a^-1*c*d,e*c*e^-1=b*c=c*b,b*d=d*b,b*e=e*b,d*c*d=a^2*c,e*d*e^-1=a^2*b*d>;
// generators/relations

׿
×
𝔽