Extensions 1→N→G→Q→1 with N=2+ 1+4 and Q=C4

Direct product G=N×Q with N=2+ 1+4 and Q=C4
dρLabelID
C4×2+ 1+432C4xES+(2,2)128,2161

Semidirect products G=N:Q with N=2+ 1+4 and Q=C4
extensionφ:Q→Out NdρLabelID
2+ 1+4⋊C4 = C42.D4φ: C4/C1C4 ⊆ Out 2+ 1+4164+ES+(2,2):C4128,134
2+ 1+42C4 = 2+ 1+42C4φ: C4/C2C2 ⊆ Out 2+ 1+432ES+(2,2):2C4128,522
2+ 1+43C4 = 2+ 1+43C4φ: C4/C2C2 ⊆ Out 2+ 1+432ES+(2,2):3C4128,524
2+ 1+44C4 = 2+ 1+44C4φ: C4/C2C2 ⊆ Out 2+ 1+4324ES+(2,2):4C4128,526
2+ 1+45C4 = 2+ 1+45C4φ: C4/C2C2 ⊆ Out 2+ 1+432ES+(2,2):5C4128,1629
2+ 1+46C4 = 2- 1+45C4φ: C4/C2C2 ⊆ Out 2+ 1+4164ES+(2,2):6C4128,1633

Non-split extensions G=N.Q with N=2+ 1+4 and Q=C4
extensionφ:Q→Out NdρLabelID
2+ 1+4.C4 = C42.2D4φ: C4/C1C4 ⊆ Out 2+ 1+4164ES+(2,2).C4128,135
2+ 1+4.2C4 = 2+ 1+4.2C4φ: C4/C2C2 ⊆ Out 2+ 1+4324ES+(2,2).2C4128,523
2+ 1+4.3C4 = C4.22C25φ: trivial image324ES+(2,2).3C4128,2305

׿
×
𝔽