Extensions 1→N→G→Q→1 with N=C2×D4⋊C4 and Q=C2

Direct product G=N×Q with N=C2×D4⋊C4 and Q=C2
dρLabelID
C22×D4⋊C464C2^2xD4:C4128,1622

Semidirect products G=N:Q with N=C2×D4⋊C4 and Q=C2
extensionφ:Q→Out NdρLabelID
(C2×D4⋊C4)⋊1C2 = C23.35D8φ: C2/C1C2 ⊆ Out C2×D4⋊C432(C2xD4:C4):1C2128,518
(C2×D4⋊C4)⋊2C2 = C24.65D4φ: C2/C1C2 ⊆ Out C2×D4⋊C464(C2xD4:C4):2C2128,520
(C2×D4⋊C4)⋊3C2 = C23.38D8φ: C2/C1C2 ⊆ Out C2×D4⋊C464(C2xD4:C4):3C2128,606
(C2×D4⋊C4)⋊4C2 = C24.74D4φ: C2/C1C2 ⊆ Out C2×D4⋊C464(C2xD4:C4):4C2128,607
(C2×D4⋊C4)⋊5C2 = (C2×C4)⋊9D8φ: C2/C1C2 ⊆ Out C2×D4⋊C464(C2xD4:C4):5C2128,611
(C2×D4⋊C4)⋊6C2 = C23.23D8φ: C2/C1C2 ⊆ Out C2×D4⋊C464(C2xD4:C4):6C2128,625
(C2×D4⋊C4)⋊7C2 = C42.432D4φ: C2/C1C2 ⊆ Out C2×D4⋊C464(C2xD4:C4):7C2128,689
(C2×D4⋊C4)⋊8C2 = (C2×C4)⋊6D8φ: C2/C1C2 ⊆ Out C2×D4⋊C464(C2xD4:C4):8C2128,702
(C2×D4⋊C4)⋊9C2 = C42.118D4φ: C2/C1C2 ⊆ Out C2×D4⋊C464(C2xD4:C4):9C2128,714
(C2×D4⋊C4)⋊10C2 = C232D8φ: C2/C1C2 ⊆ Out C2×D4⋊C464(C2xD4:C4):10C2128,731
(C2×D4⋊C4)⋊11C2 = C233SD16φ: C2/C1C2 ⊆ Out C2×D4⋊C464(C2xD4:C4):11C2128,732
(C2×D4⋊C4)⋊12C2 = C24.83D4φ: C2/C1C2 ⊆ Out C2×D4⋊C464(C2xD4:C4):12C2128,765
(C2×D4⋊C4)⋊13C2 = C24.84D4φ: C2/C1C2 ⊆ Out C2×D4⋊C464(C2xD4:C4):13C2128,766
(C2×D4⋊C4)⋊14C2 = C4⋊C47D4φ: C2/C1C2 ⊆ Out C2×D4⋊C464(C2xD4:C4):14C2128,773
(C2×D4⋊C4)⋊15C2 = (C2×C4)⋊3D8φ: C2/C1C2 ⊆ Out C2×D4⋊C464(C2xD4:C4):15C2128,786
(C2×D4⋊C4)⋊16C2 = C2×C88D4φ: C2/C1C2 ⊆ Out C2×D4⋊C464(C2xD4:C4):16C2128,1779
(C2×D4⋊C4)⋊17C2 = C2×C87D4φ: C2/C1C2 ⊆ Out C2×D4⋊C464(C2xD4:C4):17C2128,1780
(C2×D4⋊C4)⋊18C2 = C2×C4.4D8φ: C2/C1C2 ⊆ Out C2×D4⋊C464(C2xD4:C4):18C2128,1860
(C2×D4⋊C4)⋊19C2 = (C2×C4)⋊2D8φ: C2/C1C2 ⊆ Out C2×D4⋊C464(C2xD4:C4):19C2128,743
(C2×D4⋊C4)⋊20C2 = C2×C22⋊D8φ: C2/C1C2 ⊆ Out C2×D4⋊C432(C2xD4:C4):20C2128,1728
(C2×D4⋊C4)⋊21C2 = C2×D4.7D4φ: C2/C1C2 ⊆ Out C2×D4⋊C464(C2xD4:C4):21C2128,1733
(C2×D4⋊C4)⋊22C2 = C2×C4⋊D8φ: C2/C1C2 ⊆ Out C2×D4⋊C464(C2xD4:C4):22C2128,1761
(C2×D4⋊C4)⋊23C2 = C2×C22.D8φ: C2/C1C2 ⊆ Out C2×D4⋊C464(C2xD4:C4):23C2128,1817
(C2×D4⋊C4)⋊24C2 = C2×C23.19D4φ: C2/C1C2 ⊆ Out C2×D4⋊C464(C2xD4:C4):24C2128,1819
(C2×D4⋊C4)⋊25C2 = D44D8φ: C2/C1C2 ⊆ Out C2×D4⋊C432(C2xD4:C4):25C2128,2026
(C2×D4⋊C4)⋊26C2 = C42.461C23φ: C2/C1C2 ⊆ Out C2×D4⋊C432(C2xD4:C4):26C2128,2028
(C2×D4⋊C4)⋊27C2 = M4(2).10D4φ: C2/C1C2 ⊆ Out C2×D4⋊C432(C2xD4:C4):27C2128,783
(C2×D4⋊C4)⋊28C2 = (C2×D4)⋊21D4φ: C2/C1C2 ⊆ Out C2×D4⋊C432(C2xD4:C4):28C2128,1744
(C2×D4⋊C4)⋊29C2 = C42.18C23φ: C2/C1C2 ⊆ Out C2×D4⋊C432(C2xD4:C4):29C2128,1777
(C2×D4⋊C4)⋊30C2 = (C2×D4).301D4φ: C2/C1C2 ⊆ Out C2×D4⋊C432(C2xD4:C4):30C2128,1828
(C2×D4⋊C4)⋊31C2 = C42.49C23φ: C2/C1C2 ⊆ Out C2×D4⋊C432(C2xD4:C4):31C2128,2046
(C2×D4⋊C4)⋊32C2 = C42.53C23φ: C2/C1C2 ⊆ Out C2×D4⋊C432(C2xD4:C4):32C2128,2050
(C2×D4⋊C4)⋊33C2 = (C22×D8).C2φ: C2/C1C2 ⊆ Out C2×D4⋊C464(C2xD4:C4):33C2128,744
(C2×D4⋊C4)⋊34C2 = (C2×C8)⋊20D4φ: C2/C1C2 ⊆ Out C2×D4⋊C464(C2xD4:C4):34C2128,746
(C2×D4⋊C4)⋊35C2 = C2×C22⋊SD16φ: C2/C1C2 ⊆ Out C2×D4⋊C432(C2xD4:C4):35C2128,1729
(C2×D4⋊C4)⋊36C2 = C2×D4⋊D4φ: C2/C1C2 ⊆ Out C2×D4⋊C464(C2xD4:C4):36C2128,1732
(C2×D4⋊C4)⋊37C2 = C2×D4.2D4φ: C2/C1C2 ⊆ Out C2×D4⋊C464(C2xD4:C4):37C2128,1763
(C2×D4⋊C4)⋊38C2 = C2×C4⋊SD16φ: C2/C1C2 ⊆ Out C2×D4⋊C464(C2xD4:C4):38C2128,1764
(C2×D4⋊C4)⋊39C2 = C2×C23.46D4φ: C2/C1C2 ⊆ Out C2×D4⋊C464(C2xD4:C4):39C2128,1821
(C2×D4⋊C4)⋊40C2 = D47SD16φ: C2/C1C2 ⊆ Out C2×D4⋊C432(C2xD4:C4):40C2128,2027
(C2×D4⋊C4)⋊41C2 = C42.462C23φ: C2/C1C2 ⊆ Out C2×D4⋊C432(C2xD4:C4):41C2128,2029
(C2×D4⋊C4)⋊42C2 = C42.41C23φ: C2/C1C2 ⊆ Out C2×D4⋊C432(C2xD4:C4):42C2128,2038
(C2×D4⋊C4)⋊43C2 = C42.45C23φ: C2/C1C2 ⊆ Out C2×D4⋊C432(C2xD4:C4):43C2128,2042
(C2×D4⋊C4)⋊44C2 = C24.76D4φ: C2/C1C2 ⊆ Out C2×D4⋊C464(C2xD4:C4):44C2128,627
(C2×D4⋊C4)⋊45C2 = M4(2).48D4φ: C2/C1C2 ⊆ Out C2×D4⋊C432(C2xD4:C4):45C2128,639
(C2×D4⋊C4)⋊46C2 = C42.112D4φ: C2/C1C2 ⊆ Out C2×D4⋊C464(C2xD4:C4):46C2128,693
(C2×D4⋊C4)⋊47C2 = (C2×D8)⋊10C4φ: C2/C1C2 ⊆ Out C2×D4⋊C464(C2xD4:C4):47C2128,704
(C2×D4⋊C4)⋊48C2 = C2×C23.37D4φ: C2/C1C2 ⊆ Out C2×D4⋊C432(C2xD4:C4):48C2128,1625
(C2×D4⋊C4)⋊49C2 = C2×C23.36D4φ: C2/C1C2 ⊆ Out C2×D4⋊C464(C2xD4:C4):49C2128,1627
(C2×D4⋊C4)⋊50C2 = 2+ 1+45C4φ: C2/C1C2 ⊆ Out C2×D4⋊C432(C2xD4:C4):50C2128,1629
(C2×D4⋊C4)⋊51C2 = C2×D8⋊C4φ: C2/C1C2 ⊆ Out C2×D4⋊C464(C2xD4:C4):51C2128,1674
(C2×D4⋊C4)⋊52C2 = C42.275C23φ: C2/C1C2 ⊆ Out C2×D4⋊C432(C2xD4:C4):52C2128,1678
(C2×D4⋊C4)⋊53C2 = C2×C8⋊D4φ: C2/C1C2 ⊆ Out C2×D4⋊C464(C2xD4:C4):53C2128,1783
(C2×D4⋊C4)⋊54C2 = C2×C82D4φ: C2/C1C2 ⊆ Out C2×D4⋊C464(C2xD4:C4):54C2128,1784
(C2×D4⋊C4)⋊55C2 = M4(2)⋊16D4φ: C2/C1C2 ⊆ Out C2×D4⋊C432(C2xD4:C4):55C2128,1794
(C2×D4⋊C4)⋊56C2 = C2×C42.29C22φ: C2/C1C2 ⊆ Out C2×D4⋊C464(C2xD4:C4):56C2128,1865
(C2×D4⋊C4)⋊57C2 = C42.366C23φ: C2/C1C2 ⊆ Out C2×D4⋊C432(C2xD4:C4):57C2128,1868
(C2×D4⋊C4)⋊58C2 = C2×C23.24D4φ: trivial image64(C2xD4:C4):58C2128,1624
(C2×D4⋊C4)⋊59C2 = C2×C4×D8φ: trivial image64(C2xD4:C4):59C2128,1668

Non-split extensions G=N.Q with N=C2×D4⋊C4 and Q=C2
extensionφ:Q→Out NdρLabelID
(C2×D4⋊C4).1C2 = C42.98D4φ: C2/C1C2 ⊆ Out C2×D4⋊C464(C2xD4:C4).1C2128,534
(C2×D4⋊C4).2C2 = C42.100D4φ: C2/C1C2 ⊆ Out C2×D4⋊C464(C2xD4:C4).2C2128,536
(C2×D4⋊C4).3C2 = (C2×SD16)⋊14C4φ: C2/C1C2 ⊆ Out C2×D4⋊C464(C2xD4:C4).3C2128,609
(C2×D4⋊C4).4C2 = (C2×SD16)⋊15C4φ: C2/C1C2 ⊆ Out C2×D4⋊C464(C2xD4:C4).4C2128,612
(C2×D4⋊C4).5C2 = D4⋊C4⋊C4φ: C2/C1C2 ⊆ Out C2×D4⋊C464(C2xD4:C4).5C2128,657
(C2×D4⋊C4).6C2 = C4.67(C4×D4)φ: C2/C1C2 ⊆ Out C2×D4⋊C464(C2xD4:C4).6C2128,658
(C2×D4⋊C4).7C2 = C2.(C87D4)φ: C2/C1C2 ⊆ Out C2×D4⋊C464(C2xD4:C4).7C2128,666
(C2×D4⋊C4).8C2 = C42.433D4φ: C2/C1C2 ⊆ Out C2×D4⋊C464(C2xD4:C4).8C2128,690
(C2×D4⋊C4).9C2 = (C2×C4)⋊9SD16φ: C2/C1C2 ⊆ Out C2×D4⋊C464(C2xD4:C4).9C2128,700
(C2×D4⋊C4).10C2 = C42.119D4φ: C2/C1C2 ⊆ Out C2×D4⋊C464(C2xD4:C4).10C2128,715
(C2×D4⋊C4).11C2 = (C2×D4)⋊Q8φ: C2/C1C2 ⊆ Out C2×D4⋊C464(C2xD4:C4).11C2128,755
(C2×D4⋊C4).12C2 = C4⋊C4.84D4φ: C2/C1C2 ⊆ Out C2×D4⋊C464(C2xD4:C4).12C2128,757
(C2×D4⋊C4).13C2 = C4⋊C4.94D4φ: C2/C1C2 ⊆ Out C2×D4⋊C464(C2xD4:C4).13C2128,774
(C2×D4⋊C4).14C2 = (C2×C4)⋊5SD16φ: C2/C1C2 ⊆ Out C2×D4⋊C464(C2xD4:C4).14C2128,787
(C2×D4⋊C4).15C2 = C4⋊C4.106D4φ: C2/C1C2 ⊆ Out C2×D4⋊C464(C2xD4:C4).15C2128,797
(C2×D4⋊C4).16C2 = (C2×C4).23D8φ: C2/C1C2 ⊆ Out C2×D4⋊C464(C2xD4:C4).16C2128,799
(C2×D4⋊C4).17C2 = (C2×C4).24D8φ: C2/C1C2 ⊆ Out C2×D4⋊C464(C2xD4:C4).17C2128,803
(C2×D4⋊C4).18C2 = C428C4⋊C2φ: C2/C1C2 ⊆ Out C2×D4⋊C464(C2xD4:C4).18C2128,805
(C2×D4⋊C4).19C2 = C2×C42.78C22φ: C2/C1C2 ⊆ Out C2×D4⋊C464(C2xD4:C4).19C2128,1862
(C2×D4⋊C4).20C2 = C2.(C4×D8)φ: C2/C1C2 ⊆ Out C2×D4⋊C464(C2xD4:C4).20C2128,594
(C2×D4⋊C4).21C2 = (C2×C8).41D4φ: C2/C1C2 ⊆ Out C2×D4⋊C464(C2xD4:C4).21C2128,747
(C2×D4⋊C4).22C2 = (C2×C8).168D4φ: C2/C1C2 ⊆ Out C2×D4⋊C464(C2xD4:C4).22C2128,824
(C2×D4⋊C4).23C2 = (C2×C4).27D8φ: C2/C1C2 ⊆ Out C2×D4⋊C464(C2xD4:C4).23C2128,825
(C2×D4⋊C4).24C2 = C2×Q8.D4φ: C2/C1C2 ⊆ Out C2×D4⋊C464(C2xD4:C4).24C2128,1766
(C2×D4⋊C4).25C2 = C2×D4⋊Q8φ: C2/C1C2 ⊆ Out C2×D4⋊C464(C2xD4:C4).25C2128,1802
(C2×D4⋊C4).26C2 = C2×D4.Q8φ: C2/C1C2 ⊆ Out C2×D4⋊C464(C2xD4:C4).26C2128,1804
(C2×D4⋊C4).27C2 = M4(2).12D4φ: C2/C1C2 ⊆ Out C2×D4⋊C432(C2xD4:C4).27C2128,795
(C2×D4⋊C4).28C2 = C42.20C23φ: C2/C1C2 ⊆ Out C2×D4⋊C432(C2xD4:C4).28C2128,1813
(C2×D4⋊C4).29C2 = D4⋊(C4⋊C4)φ: C2/C1C2 ⊆ Out C2×D4⋊C464(C2xD4:C4).29C2128,596
(C2×D4⋊C4).30C2 = (C2×C8).169D4φ: C2/C1C2 ⊆ Out C2×D4⋊C464(C2xD4:C4).30C2128,826
(C2×D4⋊C4).31C2 = C2×D42Q8φ: C2/C1C2 ⊆ Out C2×D4⋊C464(C2xD4:C4).31C2128,1803
(C2×D4⋊C4).32C2 = D4⋊C42φ: C2/C1C2 ⊆ Out C2×D4⋊C464(C2xD4:C4).32C2128,494
(C2×D4⋊C4).33C2 = C4.D43C4φ: C2/C1C2 ⊆ Out C2×D4⋊C432(C2xD4:C4).33C2128,663
(C2×D4⋊C4).34C2 = C2.(C82D4)φ: C2/C1C2 ⊆ Out C2×D4⋊C464(C2xD4:C4).34C2128,668
(C2×D4⋊C4).35C2 = C42.110D4φ: C2/C1C2 ⊆ Out C2×D4⋊C464(C2xD4:C4).35C2128,691
(C2×D4⋊C4).36C2 = C8⋊(C22⋊C4)φ: C2/C1C2 ⊆ Out C2×D4⋊C464(C2xD4:C4).36C2128,705
(C2×D4⋊C4).37C2 = C2×SD16⋊C4φ: C2/C1C2 ⊆ Out C2×D4⋊C464(C2xD4:C4).37C2128,1672
(C2×D4⋊C4).38C2 = C2×C42.28C22φ: C2/C1C2 ⊆ Out C2×D4⋊C464(C2xD4:C4).38C2128,1864
(C2×D4⋊C4).39C2 = C4×D4⋊C4φ: trivial image64(C2xD4:C4).39C2128,492
(C2×D4⋊C4).40C2 = C2×C4×SD16φ: trivial image64(C2xD4:C4).40C2128,1669

׿
×
𝔽