extension | φ:Q→Out N | d | ρ | Label | ID |
(C2×D4⋊C4)⋊1C2 = C23.35D8 | φ: C2/C1 → C2 ⊆ Out C2×D4⋊C4 | 32 | | (C2xD4:C4):1C2 | 128,518 |
(C2×D4⋊C4)⋊2C2 = C24.65D4 | φ: C2/C1 → C2 ⊆ Out C2×D4⋊C4 | 64 | | (C2xD4:C4):2C2 | 128,520 |
(C2×D4⋊C4)⋊3C2 = C23.38D8 | φ: C2/C1 → C2 ⊆ Out C2×D4⋊C4 | 64 | | (C2xD4:C4):3C2 | 128,606 |
(C2×D4⋊C4)⋊4C2 = C24.74D4 | φ: C2/C1 → C2 ⊆ Out C2×D4⋊C4 | 64 | | (C2xD4:C4):4C2 | 128,607 |
(C2×D4⋊C4)⋊5C2 = (C2×C4)⋊9D8 | φ: C2/C1 → C2 ⊆ Out C2×D4⋊C4 | 64 | | (C2xD4:C4):5C2 | 128,611 |
(C2×D4⋊C4)⋊6C2 = C23.23D8 | φ: C2/C1 → C2 ⊆ Out C2×D4⋊C4 | 64 | | (C2xD4:C4):6C2 | 128,625 |
(C2×D4⋊C4)⋊7C2 = C42.432D4 | φ: C2/C1 → C2 ⊆ Out C2×D4⋊C4 | 64 | | (C2xD4:C4):7C2 | 128,689 |
(C2×D4⋊C4)⋊8C2 = (C2×C4)⋊6D8 | φ: C2/C1 → C2 ⊆ Out C2×D4⋊C4 | 64 | | (C2xD4:C4):8C2 | 128,702 |
(C2×D4⋊C4)⋊9C2 = C42.118D4 | φ: C2/C1 → C2 ⊆ Out C2×D4⋊C4 | 64 | | (C2xD4:C4):9C2 | 128,714 |
(C2×D4⋊C4)⋊10C2 = C23⋊2D8 | φ: C2/C1 → C2 ⊆ Out C2×D4⋊C4 | 64 | | (C2xD4:C4):10C2 | 128,731 |
(C2×D4⋊C4)⋊11C2 = C23⋊3SD16 | φ: C2/C1 → C2 ⊆ Out C2×D4⋊C4 | 64 | | (C2xD4:C4):11C2 | 128,732 |
(C2×D4⋊C4)⋊12C2 = C24.83D4 | φ: C2/C1 → C2 ⊆ Out C2×D4⋊C4 | 64 | | (C2xD4:C4):12C2 | 128,765 |
(C2×D4⋊C4)⋊13C2 = C24.84D4 | φ: C2/C1 → C2 ⊆ Out C2×D4⋊C4 | 64 | | (C2xD4:C4):13C2 | 128,766 |
(C2×D4⋊C4)⋊14C2 = C4⋊C4⋊7D4 | φ: C2/C1 → C2 ⊆ Out C2×D4⋊C4 | 64 | | (C2xD4:C4):14C2 | 128,773 |
(C2×D4⋊C4)⋊15C2 = (C2×C4)⋊3D8 | φ: C2/C1 → C2 ⊆ Out C2×D4⋊C4 | 64 | | (C2xD4:C4):15C2 | 128,786 |
(C2×D4⋊C4)⋊16C2 = C2×C8⋊8D4 | φ: C2/C1 → C2 ⊆ Out C2×D4⋊C4 | 64 | | (C2xD4:C4):16C2 | 128,1779 |
(C2×D4⋊C4)⋊17C2 = C2×C8⋊7D4 | φ: C2/C1 → C2 ⊆ Out C2×D4⋊C4 | 64 | | (C2xD4:C4):17C2 | 128,1780 |
(C2×D4⋊C4)⋊18C2 = C2×C4.4D8 | φ: C2/C1 → C2 ⊆ Out C2×D4⋊C4 | 64 | | (C2xD4:C4):18C2 | 128,1860 |
(C2×D4⋊C4)⋊19C2 = (C2×C4)⋊2D8 | φ: C2/C1 → C2 ⊆ Out C2×D4⋊C4 | 64 | | (C2xD4:C4):19C2 | 128,743 |
(C2×D4⋊C4)⋊20C2 = C2×C22⋊D8 | φ: C2/C1 → C2 ⊆ Out C2×D4⋊C4 | 32 | | (C2xD4:C4):20C2 | 128,1728 |
(C2×D4⋊C4)⋊21C2 = C2×D4.7D4 | φ: C2/C1 → C2 ⊆ Out C2×D4⋊C4 | 64 | | (C2xD4:C4):21C2 | 128,1733 |
(C2×D4⋊C4)⋊22C2 = C2×C4⋊D8 | φ: C2/C1 → C2 ⊆ Out C2×D4⋊C4 | 64 | | (C2xD4:C4):22C2 | 128,1761 |
(C2×D4⋊C4)⋊23C2 = C2×C22.D8 | φ: C2/C1 → C2 ⊆ Out C2×D4⋊C4 | 64 | | (C2xD4:C4):23C2 | 128,1817 |
(C2×D4⋊C4)⋊24C2 = C2×C23.19D4 | φ: C2/C1 → C2 ⊆ Out C2×D4⋊C4 | 64 | | (C2xD4:C4):24C2 | 128,1819 |
(C2×D4⋊C4)⋊25C2 = D4⋊4D8 | φ: C2/C1 → C2 ⊆ Out C2×D4⋊C4 | 32 | | (C2xD4:C4):25C2 | 128,2026 |
(C2×D4⋊C4)⋊26C2 = C42.461C23 | φ: C2/C1 → C2 ⊆ Out C2×D4⋊C4 | 32 | | (C2xD4:C4):26C2 | 128,2028 |
(C2×D4⋊C4)⋊27C2 = M4(2).10D4 | φ: C2/C1 → C2 ⊆ Out C2×D4⋊C4 | 32 | | (C2xD4:C4):27C2 | 128,783 |
(C2×D4⋊C4)⋊28C2 = (C2×D4)⋊21D4 | φ: C2/C1 → C2 ⊆ Out C2×D4⋊C4 | 32 | | (C2xD4:C4):28C2 | 128,1744 |
(C2×D4⋊C4)⋊29C2 = C42.18C23 | φ: C2/C1 → C2 ⊆ Out C2×D4⋊C4 | 32 | | (C2xD4:C4):29C2 | 128,1777 |
(C2×D4⋊C4)⋊30C2 = (C2×D4).301D4 | φ: C2/C1 → C2 ⊆ Out C2×D4⋊C4 | 32 | | (C2xD4:C4):30C2 | 128,1828 |
(C2×D4⋊C4)⋊31C2 = C42.49C23 | φ: C2/C1 → C2 ⊆ Out C2×D4⋊C4 | 32 | | (C2xD4:C4):31C2 | 128,2046 |
(C2×D4⋊C4)⋊32C2 = C42.53C23 | φ: C2/C1 → C2 ⊆ Out C2×D4⋊C4 | 32 | | (C2xD4:C4):32C2 | 128,2050 |
(C2×D4⋊C4)⋊33C2 = (C22×D8).C2 | φ: C2/C1 → C2 ⊆ Out C2×D4⋊C4 | 64 | | (C2xD4:C4):33C2 | 128,744 |
(C2×D4⋊C4)⋊34C2 = (C2×C8)⋊20D4 | φ: C2/C1 → C2 ⊆ Out C2×D4⋊C4 | 64 | | (C2xD4:C4):34C2 | 128,746 |
(C2×D4⋊C4)⋊35C2 = C2×C22⋊SD16 | φ: C2/C1 → C2 ⊆ Out C2×D4⋊C4 | 32 | | (C2xD4:C4):35C2 | 128,1729 |
(C2×D4⋊C4)⋊36C2 = C2×D4⋊D4 | φ: C2/C1 → C2 ⊆ Out C2×D4⋊C4 | 64 | | (C2xD4:C4):36C2 | 128,1732 |
(C2×D4⋊C4)⋊37C2 = C2×D4.2D4 | φ: C2/C1 → C2 ⊆ Out C2×D4⋊C4 | 64 | | (C2xD4:C4):37C2 | 128,1763 |
(C2×D4⋊C4)⋊38C2 = C2×C4⋊SD16 | φ: C2/C1 → C2 ⊆ Out C2×D4⋊C4 | 64 | | (C2xD4:C4):38C2 | 128,1764 |
(C2×D4⋊C4)⋊39C2 = C2×C23.46D4 | φ: C2/C1 → C2 ⊆ Out C2×D4⋊C4 | 64 | | (C2xD4:C4):39C2 | 128,1821 |
(C2×D4⋊C4)⋊40C2 = D4⋊7SD16 | φ: C2/C1 → C2 ⊆ Out C2×D4⋊C4 | 32 | | (C2xD4:C4):40C2 | 128,2027 |
(C2×D4⋊C4)⋊41C2 = C42.462C23 | φ: C2/C1 → C2 ⊆ Out C2×D4⋊C4 | 32 | | (C2xD4:C4):41C2 | 128,2029 |
(C2×D4⋊C4)⋊42C2 = C42.41C23 | φ: C2/C1 → C2 ⊆ Out C2×D4⋊C4 | 32 | | (C2xD4:C4):42C2 | 128,2038 |
(C2×D4⋊C4)⋊43C2 = C42.45C23 | φ: C2/C1 → C2 ⊆ Out C2×D4⋊C4 | 32 | | (C2xD4:C4):43C2 | 128,2042 |
(C2×D4⋊C4)⋊44C2 = C24.76D4 | φ: C2/C1 → C2 ⊆ Out C2×D4⋊C4 | 64 | | (C2xD4:C4):44C2 | 128,627 |
(C2×D4⋊C4)⋊45C2 = M4(2).48D4 | φ: C2/C1 → C2 ⊆ Out C2×D4⋊C4 | 32 | | (C2xD4:C4):45C2 | 128,639 |
(C2×D4⋊C4)⋊46C2 = C42.112D4 | φ: C2/C1 → C2 ⊆ Out C2×D4⋊C4 | 64 | | (C2xD4:C4):46C2 | 128,693 |
(C2×D4⋊C4)⋊47C2 = (C2×D8)⋊10C4 | φ: C2/C1 → C2 ⊆ Out C2×D4⋊C4 | 64 | | (C2xD4:C4):47C2 | 128,704 |
(C2×D4⋊C4)⋊48C2 = C2×C23.37D4 | φ: C2/C1 → C2 ⊆ Out C2×D4⋊C4 | 32 | | (C2xD4:C4):48C2 | 128,1625 |
(C2×D4⋊C4)⋊49C2 = C2×C23.36D4 | φ: C2/C1 → C2 ⊆ Out C2×D4⋊C4 | 64 | | (C2xD4:C4):49C2 | 128,1627 |
(C2×D4⋊C4)⋊50C2 = 2+ 1+4⋊5C4 | φ: C2/C1 → C2 ⊆ Out C2×D4⋊C4 | 32 | | (C2xD4:C4):50C2 | 128,1629 |
(C2×D4⋊C4)⋊51C2 = C2×D8⋊C4 | φ: C2/C1 → C2 ⊆ Out C2×D4⋊C4 | 64 | | (C2xD4:C4):51C2 | 128,1674 |
(C2×D4⋊C4)⋊52C2 = C42.275C23 | φ: C2/C1 → C2 ⊆ Out C2×D4⋊C4 | 32 | | (C2xD4:C4):52C2 | 128,1678 |
(C2×D4⋊C4)⋊53C2 = C2×C8⋊D4 | φ: C2/C1 → C2 ⊆ Out C2×D4⋊C4 | 64 | | (C2xD4:C4):53C2 | 128,1783 |
(C2×D4⋊C4)⋊54C2 = C2×C8⋊2D4 | φ: C2/C1 → C2 ⊆ Out C2×D4⋊C4 | 64 | | (C2xD4:C4):54C2 | 128,1784 |
(C2×D4⋊C4)⋊55C2 = M4(2)⋊16D4 | φ: C2/C1 → C2 ⊆ Out C2×D4⋊C4 | 32 | | (C2xD4:C4):55C2 | 128,1794 |
(C2×D4⋊C4)⋊56C2 = C2×C42.29C22 | φ: C2/C1 → C2 ⊆ Out C2×D4⋊C4 | 64 | | (C2xD4:C4):56C2 | 128,1865 |
(C2×D4⋊C4)⋊57C2 = C42.366C23 | φ: C2/C1 → C2 ⊆ Out C2×D4⋊C4 | 32 | | (C2xD4:C4):57C2 | 128,1868 |
(C2×D4⋊C4)⋊58C2 = C2×C23.24D4 | φ: trivial image | 64 | | (C2xD4:C4):58C2 | 128,1624 |
(C2×D4⋊C4)⋊59C2 = C2×C4×D8 | φ: trivial image | 64 | | (C2xD4:C4):59C2 | 128,1668 |
extension | φ:Q→Out N | d | ρ | Label | ID |
(C2×D4⋊C4).1C2 = C42.98D4 | φ: C2/C1 → C2 ⊆ Out C2×D4⋊C4 | 64 | | (C2xD4:C4).1C2 | 128,534 |
(C2×D4⋊C4).2C2 = C42.100D4 | φ: C2/C1 → C2 ⊆ Out C2×D4⋊C4 | 64 | | (C2xD4:C4).2C2 | 128,536 |
(C2×D4⋊C4).3C2 = (C2×SD16)⋊14C4 | φ: C2/C1 → C2 ⊆ Out C2×D4⋊C4 | 64 | | (C2xD4:C4).3C2 | 128,609 |
(C2×D4⋊C4).4C2 = (C2×SD16)⋊15C4 | φ: C2/C1 → C2 ⊆ Out C2×D4⋊C4 | 64 | | (C2xD4:C4).4C2 | 128,612 |
(C2×D4⋊C4).5C2 = D4⋊C4⋊C4 | φ: C2/C1 → C2 ⊆ Out C2×D4⋊C4 | 64 | | (C2xD4:C4).5C2 | 128,657 |
(C2×D4⋊C4).6C2 = C4.67(C4×D4) | φ: C2/C1 → C2 ⊆ Out C2×D4⋊C4 | 64 | | (C2xD4:C4).6C2 | 128,658 |
(C2×D4⋊C4).7C2 = C2.(C8⋊7D4) | φ: C2/C1 → C2 ⊆ Out C2×D4⋊C4 | 64 | | (C2xD4:C4).7C2 | 128,666 |
(C2×D4⋊C4).8C2 = C42.433D4 | φ: C2/C1 → C2 ⊆ Out C2×D4⋊C4 | 64 | | (C2xD4:C4).8C2 | 128,690 |
(C2×D4⋊C4).9C2 = (C2×C4)⋊9SD16 | φ: C2/C1 → C2 ⊆ Out C2×D4⋊C4 | 64 | | (C2xD4:C4).9C2 | 128,700 |
(C2×D4⋊C4).10C2 = C42.119D4 | φ: C2/C1 → C2 ⊆ Out C2×D4⋊C4 | 64 | | (C2xD4:C4).10C2 | 128,715 |
(C2×D4⋊C4).11C2 = (C2×D4)⋊Q8 | φ: C2/C1 → C2 ⊆ Out C2×D4⋊C4 | 64 | | (C2xD4:C4).11C2 | 128,755 |
(C2×D4⋊C4).12C2 = C4⋊C4.84D4 | φ: C2/C1 → C2 ⊆ Out C2×D4⋊C4 | 64 | | (C2xD4:C4).12C2 | 128,757 |
(C2×D4⋊C4).13C2 = C4⋊C4.94D4 | φ: C2/C1 → C2 ⊆ Out C2×D4⋊C4 | 64 | | (C2xD4:C4).13C2 | 128,774 |
(C2×D4⋊C4).14C2 = (C2×C4)⋊5SD16 | φ: C2/C1 → C2 ⊆ Out C2×D4⋊C4 | 64 | | (C2xD4:C4).14C2 | 128,787 |
(C2×D4⋊C4).15C2 = C4⋊C4.106D4 | φ: C2/C1 → C2 ⊆ Out C2×D4⋊C4 | 64 | | (C2xD4:C4).15C2 | 128,797 |
(C2×D4⋊C4).16C2 = (C2×C4).23D8 | φ: C2/C1 → C2 ⊆ Out C2×D4⋊C4 | 64 | | (C2xD4:C4).16C2 | 128,799 |
(C2×D4⋊C4).17C2 = (C2×C4).24D8 | φ: C2/C1 → C2 ⊆ Out C2×D4⋊C4 | 64 | | (C2xD4:C4).17C2 | 128,803 |
(C2×D4⋊C4).18C2 = C42⋊8C4⋊C2 | φ: C2/C1 → C2 ⊆ Out C2×D4⋊C4 | 64 | | (C2xD4:C4).18C2 | 128,805 |
(C2×D4⋊C4).19C2 = C2×C42.78C22 | φ: C2/C1 → C2 ⊆ Out C2×D4⋊C4 | 64 | | (C2xD4:C4).19C2 | 128,1862 |
(C2×D4⋊C4).20C2 = C2.(C4×D8) | φ: C2/C1 → C2 ⊆ Out C2×D4⋊C4 | 64 | | (C2xD4:C4).20C2 | 128,594 |
(C2×D4⋊C4).21C2 = (C2×C8).41D4 | φ: C2/C1 → C2 ⊆ Out C2×D4⋊C4 | 64 | | (C2xD4:C4).21C2 | 128,747 |
(C2×D4⋊C4).22C2 = (C2×C8).168D4 | φ: C2/C1 → C2 ⊆ Out C2×D4⋊C4 | 64 | | (C2xD4:C4).22C2 | 128,824 |
(C2×D4⋊C4).23C2 = (C2×C4).27D8 | φ: C2/C1 → C2 ⊆ Out C2×D4⋊C4 | 64 | | (C2xD4:C4).23C2 | 128,825 |
(C2×D4⋊C4).24C2 = C2×Q8.D4 | φ: C2/C1 → C2 ⊆ Out C2×D4⋊C4 | 64 | | (C2xD4:C4).24C2 | 128,1766 |
(C2×D4⋊C4).25C2 = C2×D4⋊Q8 | φ: C2/C1 → C2 ⊆ Out C2×D4⋊C4 | 64 | | (C2xD4:C4).25C2 | 128,1802 |
(C2×D4⋊C4).26C2 = C2×D4.Q8 | φ: C2/C1 → C2 ⊆ Out C2×D4⋊C4 | 64 | | (C2xD4:C4).26C2 | 128,1804 |
(C2×D4⋊C4).27C2 = M4(2).12D4 | φ: C2/C1 → C2 ⊆ Out C2×D4⋊C4 | 32 | | (C2xD4:C4).27C2 | 128,795 |
(C2×D4⋊C4).28C2 = C42.20C23 | φ: C2/C1 → C2 ⊆ Out C2×D4⋊C4 | 32 | | (C2xD4:C4).28C2 | 128,1813 |
(C2×D4⋊C4).29C2 = D4⋊(C4⋊C4) | φ: C2/C1 → C2 ⊆ Out C2×D4⋊C4 | 64 | | (C2xD4:C4).29C2 | 128,596 |
(C2×D4⋊C4).30C2 = (C2×C8).169D4 | φ: C2/C1 → C2 ⊆ Out C2×D4⋊C4 | 64 | | (C2xD4:C4).30C2 | 128,826 |
(C2×D4⋊C4).31C2 = C2×D4⋊2Q8 | φ: C2/C1 → C2 ⊆ Out C2×D4⋊C4 | 64 | | (C2xD4:C4).31C2 | 128,1803 |
(C2×D4⋊C4).32C2 = D4⋊C42 | φ: C2/C1 → C2 ⊆ Out C2×D4⋊C4 | 64 | | (C2xD4:C4).32C2 | 128,494 |
(C2×D4⋊C4).33C2 = C4.D4⋊3C4 | φ: C2/C1 → C2 ⊆ Out C2×D4⋊C4 | 32 | | (C2xD4:C4).33C2 | 128,663 |
(C2×D4⋊C4).34C2 = C2.(C8⋊2D4) | φ: C2/C1 → C2 ⊆ Out C2×D4⋊C4 | 64 | | (C2xD4:C4).34C2 | 128,668 |
(C2×D4⋊C4).35C2 = C42.110D4 | φ: C2/C1 → C2 ⊆ Out C2×D4⋊C4 | 64 | | (C2xD4:C4).35C2 | 128,691 |
(C2×D4⋊C4).36C2 = C8⋊(C22⋊C4) | φ: C2/C1 → C2 ⊆ Out C2×D4⋊C4 | 64 | | (C2xD4:C4).36C2 | 128,705 |
(C2×D4⋊C4).37C2 = C2×SD16⋊C4 | φ: C2/C1 → C2 ⊆ Out C2×D4⋊C4 | 64 | | (C2xD4:C4).37C2 | 128,1672 |
(C2×D4⋊C4).38C2 = C2×C42.28C22 | φ: C2/C1 → C2 ⊆ Out C2×D4⋊C4 | 64 | | (C2xD4:C4).38C2 | 128,1864 |
(C2×D4⋊C4).39C2 = C4×D4⋊C4 | φ: trivial image | 64 | | (C2xD4:C4).39C2 | 128,492 |
(C2×D4⋊C4).40C2 = C2×C4×SD16 | φ: trivial image | 64 | | (C2xD4:C4).40C2 | 128,1669 |