extension | φ:Q→Out N | d | ρ | Label | ID |
(C2xD4:C4):1C2 = C23.35D8 | φ: C2/C1 → C2 ⊆ Out C2xD4:C4 | 32 | | (C2xD4:C4):1C2 | 128,518 |
(C2xD4:C4):2C2 = C24.65D4 | φ: C2/C1 → C2 ⊆ Out C2xD4:C4 | 64 | | (C2xD4:C4):2C2 | 128,520 |
(C2xD4:C4):3C2 = C23.38D8 | φ: C2/C1 → C2 ⊆ Out C2xD4:C4 | 64 | | (C2xD4:C4):3C2 | 128,606 |
(C2xD4:C4):4C2 = C24.74D4 | φ: C2/C1 → C2 ⊆ Out C2xD4:C4 | 64 | | (C2xD4:C4):4C2 | 128,607 |
(C2xD4:C4):5C2 = (C2xC4):9D8 | φ: C2/C1 → C2 ⊆ Out C2xD4:C4 | 64 | | (C2xD4:C4):5C2 | 128,611 |
(C2xD4:C4):6C2 = C23.23D8 | φ: C2/C1 → C2 ⊆ Out C2xD4:C4 | 64 | | (C2xD4:C4):6C2 | 128,625 |
(C2xD4:C4):7C2 = C42.432D4 | φ: C2/C1 → C2 ⊆ Out C2xD4:C4 | 64 | | (C2xD4:C4):7C2 | 128,689 |
(C2xD4:C4):8C2 = (C2xC4):6D8 | φ: C2/C1 → C2 ⊆ Out C2xD4:C4 | 64 | | (C2xD4:C4):8C2 | 128,702 |
(C2xD4:C4):9C2 = C42.118D4 | φ: C2/C1 → C2 ⊆ Out C2xD4:C4 | 64 | | (C2xD4:C4):9C2 | 128,714 |
(C2xD4:C4):10C2 = C23:2D8 | φ: C2/C1 → C2 ⊆ Out C2xD4:C4 | 64 | | (C2xD4:C4):10C2 | 128,731 |
(C2xD4:C4):11C2 = C23:3SD16 | φ: C2/C1 → C2 ⊆ Out C2xD4:C4 | 64 | | (C2xD4:C4):11C2 | 128,732 |
(C2xD4:C4):12C2 = C24.83D4 | φ: C2/C1 → C2 ⊆ Out C2xD4:C4 | 64 | | (C2xD4:C4):12C2 | 128,765 |
(C2xD4:C4):13C2 = C24.84D4 | φ: C2/C1 → C2 ⊆ Out C2xD4:C4 | 64 | | (C2xD4:C4):13C2 | 128,766 |
(C2xD4:C4):14C2 = C4:C4:7D4 | φ: C2/C1 → C2 ⊆ Out C2xD4:C4 | 64 | | (C2xD4:C4):14C2 | 128,773 |
(C2xD4:C4):15C2 = (C2xC4):3D8 | φ: C2/C1 → C2 ⊆ Out C2xD4:C4 | 64 | | (C2xD4:C4):15C2 | 128,786 |
(C2xD4:C4):16C2 = C2xC8:8D4 | φ: C2/C1 → C2 ⊆ Out C2xD4:C4 | 64 | | (C2xD4:C4):16C2 | 128,1779 |
(C2xD4:C4):17C2 = C2xC8:7D4 | φ: C2/C1 → C2 ⊆ Out C2xD4:C4 | 64 | | (C2xD4:C4):17C2 | 128,1780 |
(C2xD4:C4):18C2 = C2xC4.4D8 | φ: C2/C1 → C2 ⊆ Out C2xD4:C4 | 64 | | (C2xD4:C4):18C2 | 128,1860 |
(C2xD4:C4):19C2 = (C2xC4):2D8 | φ: C2/C1 → C2 ⊆ Out C2xD4:C4 | 64 | | (C2xD4:C4):19C2 | 128,743 |
(C2xD4:C4):20C2 = C2xC22:D8 | φ: C2/C1 → C2 ⊆ Out C2xD4:C4 | 32 | | (C2xD4:C4):20C2 | 128,1728 |
(C2xD4:C4):21C2 = C2xD4.7D4 | φ: C2/C1 → C2 ⊆ Out C2xD4:C4 | 64 | | (C2xD4:C4):21C2 | 128,1733 |
(C2xD4:C4):22C2 = C2xC4:D8 | φ: C2/C1 → C2 ⊆ Out C2xD4:C4 | 64 | | (C2xD4:C4):22C2 | 128,1761 |
(C2xD4:C4):23C2 = C2xC22.D8 | φ: C2/C1 → C2 ⊆ Out C2xD4:C4 | 64 | | (C2xD4:C4):23C2 | 128,1817 |
(C2xD4:C4):24C2 = C2xC23.19D4 | φ: C2/C1 → C2 ⊆ Out C2xD4:C4 | 64 | | (C2xD4:C4):24C2 | 128,1819 |
(C2xD4:C4):25C2 = D4:4D8 | φ: C2/C1 → C2 ⊆ Out C2xD4:C4 | 32 | | (C2xD4:C4):25C2 | 128,2026 |
(C2xD4:C4):26C2 = C42.461C23 | φ: C2/C1 → C2 ⊆ Out C2xD4:C4 | 32 | | (C2xD4:C4):26C2 | 128,2028 |
(C2xD4:C4):27C2 = M4(2).10D4 | φ: C2/C1 → C2 ⊆ Out C2xD4:C4 | 32 | | (C2xD4:C4):27C2 | 128,783 |
(C2xD4:C4):28C2 = (C2xD4):21D4 | φ: C2/C1 → C2 ⊆ Out C2xD4:C4 | 32 | | (C2xD4:C4):28C2 | 128,1744 |
(C2xD4:C4):29C2 = C42.18C23 | φ: C2/C1 → C2 ⊆ Out C2xD4:C4 | 32 | | (C2xD4:C4):29C2 | 128,1777 |
(C2xD4:C4):30C2 = (C2xD4).301D4 | φ: C2/C1 → C2 ⊆ Out C2xD4:C4 | 32 | | (C2xD4:C4):30C2 | 128,1828 |
(C2xD4:C4):31C2 = C42.49C23 | φ: C2/C1 → C2 ⊆ Out C2xD4:C4 | 32 | | (C2xD4:C4):31C2 | 128,2046 |
(C2xD4:C4):32C2 = C42.53C23 | φ: C2/C1 → C2 ⊆ Out C2xD4:C4 | 32 | | (C2xD4:C4):32C2 | 128,2050 |
(C2xD4:C4):33C2 = (C22xD8).C2 | φ: C2/C1 → C2 ⊆ Out C2xD4:C4 | 64 | | (C2xD4:C4):33C2 | 128,744 |
(C2xD4:C4):34C2 = (C2xC8):20D4 | φ: C2/C1 → C2 ⊆ Out C2xD4:C4 | 64 | | (C2xD4:C4):34C2 | 128,746 |
(C2xD4:C4):35C2 = C2xC22:SD16 | φ: C2/C1 → C2 ⊆ Out C2xD4:C4 | 32 | | (C2xD4:C4):35C2 | 128,1729 |
(C2xD4:C4):36C2 = C2xD4:D4 | φ: C2/C1 → C2 ⊆ Out C2xD4:C4 | 64 | | (C2xD4:C4):36C2 | 128,1732 |
(C2xD4:C4):37C2 = C2xD4.2D4 | φ: C2/C1 → C2 ⊆ Out C2xD4:C4 | 64 | | (C2xD4:C4):37C2 | 128,1763 |
(C2xD4:C4):38C2 = C2xC4:SD16 | φ: C2/C1 → C2 ⊆ Out C2xD4:C4 | 64 | | (C2xD4:C4):38C2 | 128,1764 |
(C2xD4:C4):39C2 = C2xC23.46D4 | φ: C2/C1 → C2 ⊆ Out C2xD4:C4 | 64 | | (C2xD4:C4):39C2 | 128,1821 |
(C2xD4:C4):40C2 = D4:7SD16 | φ: C2/C1 → C2 ⊆ Out C2xD4:C4 | 32 | | (C2xD4:C4):40C2 | 128,2027 |
(C2xD4:C4):41C2 = C42.462C23 | φ: C2/C1 → C2 ⊆ Out C2xD4:C4 | 32 | | (C2xD4:C4):41C2 | 128,2029 |
(C2xD4:C4):42C2 = C42.41C23 | φ: C2/C1 → C2 ⊆ Out C2xD4:C4 | 32 | | (C2xD4:C4):42C2 | 128,2038 |
(C2xD4:C4):43C2 = C42.45C23 | φ: C2/C1 → C2 ⊆ Out C2xD4:C4 | 32 | | (C2xD4:C4):43C2 | 128,2042 |
(C2xD4:C4):44C2 = C24.76D4 | φ: C2/C1 → C2 ⊆ Out C2xD4:C4 | 64 | | (C2xD4:C4):44C2 | 128,627 |
(C2xD4:C4):45C2 = M4(2).48D4 | φ: C2/C1 → C2 ⊆ Out C2xD4:C4 | 32 | | (C2xD4:C4):45C2 | 128,639 |
(C2xD4:C4):46C2 = C42.112D4 | φ: C2/C1 → C2 ⊆ Out C2xD4:C4 | 64 | | (C2xD4:C4):46C2 | 128,693 |
(C2xD4:C4):47C2 = (C2xD8):10C4 | φ: C2/C1 → C2 ⊆ Out C2xD4:C4 | 64 | | (C2xD4:C4):47C2 | 128,704 |
(C2xD4:C4):48C2 = C2xC23.37D4 | φ: C2/C1 → C2 ⊆ Out C2xD4:C4 | 32 | | (C2xD4:C4):48C2 | 128,1625 |
(C2xD4:C4):49C2 = C2xC23.36D4 | φ: C2/C1 → C2 ⊆ Out C2xD4:C4 | 64 | | (C2xD4:C4):49C2 | 128,1627 |
(C2xD4:C4):50C2 = 2+ 1+4:5C4 | φ: C2/C1 → C2 ⊆ Out C2xD4:C4 | 32 | | (C2xD4:C4):50C2 | 128,1629 |
(C2xD4:C4):51C2 = C2xD8:C4 | φ: C2/C1 → C2 ⊆ Out C2xD4:C4 | 64 | | (C2xD4:C4):51C2 | 128,1674 |
(C2xD4:C4):52C2 = C42.275C23 | φ: C2/C1 → C2 ⊆ Out C2xD4:C4 | 32 | | (C2xD4:C4):52C2 | 128,1678 |
(C2xD4:C4):53C2 = C2xC8:D4 | φ: C2/C1 → C2 ⊆ Out C2xD4:C4 | 64 | | (C2xD4:C4):53C2 | 128,1783 |
(C2xD4:C4):54C2 = C2xC8:2D4 | φ: C2/C1 → C2 ⊆ Out C2xD4:C4 | 64 | | (C2xD4:C4):54C2 | 128,1784 |
(C2xD4:C4):55C2 = M4(2):16D4 | φ: C2/C1 → C2 ⊆ Out C2xD4:C4 | 32 | | (C2xD4:C4):55C2 | 128,1794 |
(C2xD4:C4):56C2 = C2xC42.29C22 | φ: C2/C1 → C2 ⊆ Out C2xD4:C4 | 64 | | (C2xD4:C4):56C2 | 128,1865 |
(C2xD4:C4):57C2 = C42.366C23 | φ: C2/C1 → C2 ⊆ Out C2xD4:C4 | 32 | | (C2xD4:C4):57C2 | 128,1868 |
(C2xD4:C4):58C2 = C2xC23.24D4 | φ: trivial image | 64 | | (C2xD4:C4):58C2 | 128,1624 |
(C2xD4:C4):59C2 = C2xC4xD8 | φ: trivial image | 64 | | (C2xD4:C4):59C2 | 128,1668 |