Extensions 1→N→G→Q→1 with N=C2×C3⋊S3 and Q=C4

Direct product G=N×Q with N=C2×C3⋊S3 and Q=C4
dρLabelID
C2×C4×C3⋊S372C2xC4xC3:S3144,169

Semidirect products G=N:Q with N=C2×C3⋊S3 and Q=C4
extensionφ:Q→Out NdρLabelID
(C2×C3⋊S3)⋊1C4 = C6.D12φ: C4/C2C2 ⊆ Out C2×C3⋊S324(C2xC3:S3):1C4144,65
(C2×C3⋊S3)⋊2C4 = C6.11D12φ: C4/C2C2 ⊆ Out C2×C3⋊S372(C2xC3:S3):2C4144,95
(C2×C3⋊S3)⋊3C4 = C62⋊C4φ: C4/C2C2 ⊆ Out C2×C3⋊S3124+(C2xC3:S3):3C4144,136
(C2×C3⋊S3)⋊4C4 = C2×C6.D6φ: C4/C2C2 ⊆ Out C2×C3⋊S324(C2xC3:S3):4C4144,149
(C2×C3⋊S3)⋊5C4 = C22×C32⋊C4φ: C4/C2C2 ⊆ Out C2×C3⋊S324(C2xC3:S3):5C4144,191

Non-split extensions G=N.Q with N=C2×C3⋊S3 and Q=C4
extensionφ:Q→Out NdρLabelID
(C2×C3⋊S3).C4 = C2×F9φ: C4/C1C4 ⊆ Out C2×C3⋊S3188+(C2xC3:S3).C4144,185
(C2×C3⋊S3).2C4 = C12.29D6φ: C4/C2C2 ⊆ Out C2×C3⋊S3244(C2xC3:S3).2C4144,53
(C2×C3⋊S3).3C4 = C12.31D6φ: C4/C2C2 ⊆ Out C2×C3⋊S3244(C2xC3:S3).3C4144,55
(C2×C3⋊S3).4C4 = C24⋊S3φ: C4/C2C2 ⊆ Out C2×C3⋊S372(C2xC3:S3).4C4144,86
(C2×C3⋊S3).5C4 = C3⋊S33C8φ: C4/C2C2 ⊆ Out C2×C3⋊S3244(C2xC3:S3).5C4144,130
(C2×C3⋊S3).6C4 = C32⋊M4(2)φ: C4/C2C2 ⊆ Out C2×C3⋊S3244(C2xC3:S3).6C4144,131
(C2×C3⋊S3).7C4 = C8×C3⋊S3φ: trivial image72(C2xC3:S3).7C4144,85

׿
×
𝔽