Extensions 1→N→G→Q→1 with N=C3×C3⋊D4 and Q=C2

Direct product G=N×Q with N=C3×C3⋊D4 and Q=C2
dρLabelID
C6×C3⋊D424C6xC3:D4144,167

Semidirect products G=N:Q with N=C3×C3⋊D4 and Q=C2
extensionφ:Q→Out NdρLabelID
(C3×C3⋊D4)⋊1C2 = D6.3D6φ: C2/C1C2 ⊆ Out C3×C3⋊D4244(C3xC3:D4):1C2144,147
(C3×C3⋊D4)⋊2C2 = D6.4D6φ: C2/C1C2 ⊆ Out C3×C3⋊D4244-(C3xC3:D4):2C2144,148
(C3×C3⋊D4)⋊3C2 = S3×C3⋊D4φ: C2/C1C2 ⊆ Out C3×C3⋊D4244(C3xC3:D4):3C2144,153
(C3×C3⋊D4)⋊4C2 = Dic3⋊D6φ: C2/C1C2 ⊆ Out C3×C3⋊D4124+(C3xC3:D4):4C2144,154
(C3×C3⋊D4)⋊5C2 = C3×S3×D4φ: C2/C1C2 ⊆ Out C3×C3⋊D4244(C3xC3:D4):5C2144,162
(C3×C3⋊D4)⋊6C2 = C3×D42S3φ: C2/C1C2 ⊆ Out C3×C3⋊D4244(C3xC3:D4):6C2144,163
(C3×C3⋊D4)⋊7C2 = C3×C4○D12φ: trivial image242(C3xC3:D4):7C2144,161


׿
×
𝔽