Extensions 1→N→G→Q→1 with N=C12⋊S3 and Q=C2

Direct product G=N×Q with N=C12⋊S3 and Q=C2
dρLabelID
C2×C12⋊S372C2xC12:S3144,170

Semidirect products G=N:Q with N=C12⋊S3 and Q=C2
extensionφ:Q→Out NdρLabelID
C12⋊S31C2 = C325D8φ: C2/C1C2 ⊆ Out C12⋊S372C12:S3:1C2144,88
C12⋊S32C2 = C3⋊D24φ: C2/C1C2 ⊆ Out C12⋊S3244+C12:S3:2C2144,57
C12⋊S33C2 = C327D8φ: C2/C1C2 ⊆ Out C12⋊S372C12:S3:3C2144,96
C12⋊S34C2 = D6.6D6φ: C2/C1C2 ⊆ Out C12⋊S3244+C12:S3:4C2144,142
C12⋊S35C2 = S3×D12φ: C2/C1C2 ⊆ Out C12⋊S3244+C12:S3:5C2144,144
C12⋊S36C2 = D4×C3⋊S3φ: C2/C1C2 ⊆ Out C12⋊S336C12:S3:6C2144,172
C12⋊S37C2 = C12.26D6φ: C2/C1C2 ⊆ Out C12⋊S372C12:S3:7C2144,175
C12⋊S38C2 = C12.59D6φ: trivial image72C12:S3:8C2144,171

Non-split extensions G=N.Q with N=C12⋊S3 and Q=C2
extensionφ:Q→Out NdρLabelID
C12⋊S3.1C2 = C242S3φ: C2/C1C2 ⊆ Out C12⋊S372C12:S3.1C2144,87
C12⋊S3.2C2 = C325SD16φ: C2/C1C2 ⊆ Out C12⋊S3244+C12:S3.2C2144,60
C12⋊S3.3C2 = C3211SD16φ: C2/C1C2 ⊆ Out C12⋊S372C12:S3.3C2144,98

׿
×
𝔽