Extensions 1→N→G→Q→1 with N=C3 and Q=S3×D4

Direct product G=N×Q with N=C3 and Q=S3×D4
dρLabelID
C3×S3×D4244C3xS3xD4144,162

Semidirect products G=N:Q with N=C3 and Q=S3×D4
extensionφ:Q→Aut NdρLabelID
C31(S3×D4) = S3×D12φ: S3×D4/C4×S3C2 ⊆ Aut C3244+C3:1(S3xD4)144,144
C32(S3×D4) = D6⋊D6φ: S3×D4/D12C2 ⊆ Aut C3244C3:2(S3xD4)144,145
C33(S3×D4) = Dic3⋊D6φ: S3×D4/C3⋊D4C2 ⊆ Aut C3124+C3:3(S3xD4)144,154
C34(S3×D4) = D4×C3⋊S3φ: S3×D4/C3×D4C2 ⊆ Aut C336C3:4(S3xD4)144,172
C35(S3×D4) = S3×C3⋊D4φ: S3×D4/C22×S3C2 ⊆ Aut C3244C3:5(S3xD4)144,153

Non-split extensions G=N.Q with N=C3 and Q=S3×D4
extensionφ:Q→Aut NdρLabelID
C3.(S3×D4) = D4×D9φ: S3×D4/C3×D4C2 ⊆ Aut C3364+C3.(S3xD4)144,41

׿
×
𝔽