Extensions 1→N→G→Q→1 with N=C3 and Q=D42S3

Direct product G=N×Q with N=C3 and Q=D42S3
dρLabelID
C3×D42S3244C3xD4:2S3144,163

Semidirect products G=N:Q with N=C3 and Q=D42S3
extensionφ:Q→Aut NdρLabelID
C31(D42S3) = D12⋊S3φ: D42S3/Dic6C2 ⊆ Aut C3244C3:1(D4:2S3)144,139
C32(D42S3) = D125S3φ: D42S3/C4×S3C2 ⊆ Aut C3484-C3:2(D4:2S3)144,138
C33(D42S3) = D6.3D6φ: D42S3/C2×Dic3C2 ⊆ Aut C3244C3:3(D4:2S3)144,147
C34(D42S3) = D6.4D6φ: D42S3/C3⋊D4C2 ⊆ Aut C3244-C3:4(D4:2S3)144,148
C35(D42S3) = C12.D6φ: D42S3/C3×D4C2 ⊆ Aut C372C3:5(D4:2S3)144,173

Non-split extensions G=N.Q with N=C3 and Q=D42S3
extensionφ:Q→Aut NdρLabelID
C3.(D42S3) = D42D9φ: D42S3/C3×D4C2 ⊆ Aut C3724-C3.(D4:2S3)144,42

׿
×
𝔽