metabelian, supersoluble, monomial, 2-hyperelementary
Aliases: D8.D5, C5⋊2SD32, C20.4D4, C10.9D8, C8.5D10, Dic20⋊3C2, C40.3C22, C5⋊2C16⋊2C2, (C5×D8).1C2, C2.5(D4⋊D5), C4.2(C5⋊D4), SmallGroup(160,34)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for D8.D5
G = < a,b,c,d | a8=b2=c5=1, d2=a4, bab=dad-1=a-1, ac=ca, bc=cb, dbd-1=a5b, dcd-1=c-1 >
Character table of D8.D5
class | 1 | 2A | 2B | 4A | 4B | 5A | 5B | 8A | 8B | 10A | 10B | 10C | 10D | 10E | 10F | 16A | 16B | 16C | 16D | 20A | 20B | 40A | 40B | 40C | 40D | |
size | 1 | 1 | 8 | 2 | 40 | 2 | 2 | 2 | 2 | 2 | 2 | 8 | 8 | 8 | 8 | 10 | 10 | 10 | 10 | 4 | 4 | 4 | 4 | 4 | 4 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | linear of order 2 |
ρ3 | 1 | 1 | -1 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | linear of order 2 |
ρ4 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | linear of order 2 |
ρ5 | 2 | 2 | 0 | 2 | 0 | 2 | 2 | -2 | -2 | 2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 2 | -2 | -2 | -2 | -2 | orthogonal lifted from D4 |
ρ6 | 2 | 2 | 0 | -2 | 0 | 2 | 2 | 0 | 0 | 2 | 2 | 0 | 0 | 0 | 0 | -√2 | √2 | √2 | -√2 | -2 | -2 | 0 | 0 | 0 | 0 | orthogonal lifted from D8 |
ρ7 | 2 | 2 | 2 | 2 | 0 | -1+√5/2 | -1-√5/2 | 2 | 2 | -1+√5/2 | -1-√5/2 | -1+√5/2 | -1-√5/2 | -1+√5/2 | -1-√5/2 | 0 | 0 | 0 | 0 | -1+√5/2 | -1-√5/2 | -1-√5/2 | -1-√5/2 | -1+√5/2 | -1+√5/2 | orthogonal lifted from D5 |
ρ8 | 2 | 2 | -2 | 2 | 0 | -1-√5/2 | -1+√5/2 | 2 | 2 | -1-√5/2 | -1+√5/2 | 1+√5/2 | 1-√5/2 | 1+√5/2 | 1-√5/2 | 0 | 0 | 0 | 0 | -1-√5/2 | -1+√5/2 | -1+√5/2 | -1+√5/2 | -1-√5/2 | -1-√5/2 | orthogonal lifted from D10 |
ρ9 | 2 | 2 | 2 | 2 | 0 | -1-√5/2 | -1+√5/2 | 2 | 2 | -1-√5/2 | -1+√5/2 | -1-√5/2 | -1+√5/2 | -1-√5/2 | -1+√5/2 | 0 | 0 | 0 | 0 | -1-√5/2 | -1+√5/2 | -1+√5/2 | -1+√5/2 | -1-√5/2 | -1-√5/2 | orthogonal lifted from D5 |
ρ10 | 2 | 2 | -2 | 2 | 0 | -1+√5/2 | -1-√5/2 | 2 | 2 | -1+√5/2 | -1-√5/2 | 1-√5/2 | 1+√5/2 | 1-√5/2 | 1+√5/2 | 0 | 0 | 0 | 0 | -1+√5/2 | -1-√5/2 | -1-√5/2 | -1-√5/2 | -1+√5/2 | -1+√5/2 | orthogonal lifted from D10 |
ρ11 | 2 | 2 | 0 | -2 | 0 | 2 | 2 | 0 | 0 | 2 | 2 | 0 | 0 | 0 | 0 | √2 | -√2 | -√2 | √2 | -2 | -2 | 0 | 0 | 0 | 0 | orthogonal lifted from D8 |
ρ12 | 2 | 2 | 0 | 2 | 0 | -1-√5/2 | -1+√5/2 | -2 | -2 | -1-√5/2 | -1+√5/2 | ζ53-ζ52 | ζ54-ζ5 | -ζ53+ζ52 | -ζ54+ζ5 | 0 | 0 | 0 | 0 | -1-√5/2 | -1+√5/2 | 1-√5/2 | 1-√5/2 | 1+√5/2 | 1+√5/2 | complex lifted from C5⋊D4 |
ρ13 | 2 | 2 | 0 | 2 | 0 | -1+√5/2 | -1-√5/2 | -2 | -2 | -1+√5/2 | -1-√5/2 | ζ54-ζ5 | -ζ53+ζ52 | -ζ54+ζ5 | ζ53-ζ52 | 0 | 0 | 0 | 0 | -1+√5/2 | -1-√5/2 | 1+√5/2 | 1+√5/2 | 1-√5/2 | 1-√5/2 | complex lifted from C5⋊D4 |
ρ14 | 2 | 2 | 0 | 2 | 0 | -1-√5/2 | -1+√5/2 | -2 | -2 | -1-√5/2 | -1+√5/2 | -ζ53+ζ52 | -ζ54+ζ5 | ζ53-ζ52 | ζ54-ζ5 | 0 | 0 | 0 | 0 | -1-√5/2 | -1+√5/2 | 1-√5/2 | 1-√5/2 | 1+√5/2 | 1+√5/2 | complex lifted from C5⋊D4 |
ρ15 | 2 | 2 | 0 | 2 | 0 | -1+√5/2 | -1-√5/2 | -2 | -2 | -1+√5/2 | -1-√5/2 | -ζ54+ζ5 | ζ53-ζ52 | ζ54-ζ5 | -ζ53+ζ52 | 0 | 0 | 0 | 0 | -1+√5/2 | -1-√5/2 | 1+√5/2 | 1+√5/2 | 1-√5/2 | 1-√5/2 | complex lifted from C5⋊D4 |
ρ16 | 2 | -2 | 0 | 0 | 0 | 2 | 2 | -√2 | √2 | -2 | -2 | 0 | 0 | 0 | 0 | ζ167+ζ16 | ζ1613+ζ1611 | ζ165+ζ163 | ζ1615+ζ169 | 0 | 0 | √2 | -√2 | -√2 | √2 | complex lifted from SD32 |
ρ17 | 2 | -2 | 0 | 0 | 0 | 2 | 2 | √2 | -√2 | -2 | -2 | 0 | 0 | 0 | 0 | ζ165+ζ163 | ζ167+ζ16 | ζ1615+ζ169 | ζ1613+ζ1611 | 0 | 0 | -√2 | √2 | √2 | -√2 | complex lifted from SD32 |
ρ18 | 2 | -2 | 0 | 0 | 0 | 2 | 2 | √2 | -√2 | -2 | -2 | 0 | 0 | 0 | 0 | ζ1613+ζ1611 | ζ1615+ζ169 | ζ167+ζ16 | ζ165+ζ163 | 0 | 0 | -√2 | √2 | √2 | -√2 | complex lifted from SD32 |
ρ19 | 2 | -2 | 0 | 0 | 0 | 2 | 2 | -√2 | √2 | -2 | -2 | 0 | 0 | 0 | 0 | ζ1615+ζ169 | ζ165+ζ163 | ζ1613+ζ1611 | ζ167+ζ16 | 0 | 0 | √2 | -√2 | -√2 | √2 | complex lifted from SD32 |
ρ20 | 4 | 4 | 0 | -4 | 0 | -1+√5 | -1-√5 | 0 | 0 | -1+√5 | -1-√5 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1-√5 | 1+√5 | 0 | 0 | 0 | 0 | orthogonal lifted from D4⋊D5, Schur index 2 |
ρ21 | 4 | 4 | 0 | -4 | 0 | -1-√5 | -1+√5 | 0 | 0 | -1-√5 | -1+√5 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1+√5 | 1-√5 | 0 | 0 | 0 | 0 | orthogonal lifted from D4⋊D5, Schur index 2 |
ρ22 | 4 | -4 | 0 | 0 | 0 | -1-√5 | -1+√5 | -2√2 | 2√2 | 1+√5 | 1-√5 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ζ87ζ54+ζ87ζ5-ζ85ζ54-ζ85ζ5 | ζ83ζ54+ζ83ζ5-ζ8ζ54-ζ8ζ5 | ζ83ζ53+ζ83ζ52-ζ8ζ53-ζ8ζ52 | -ζ83ζ53-ζ83ζ52+ζ8ζ53+ζ8ζ52 | symplectic faithful, Schur index 2 |
ρ23 | 4 | -4 | 0 | 0 | 0 | -1-√5 | -1+√5 | 2√2 | -2√2 | 1+√5 | 1-√5 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ζ83ζ54+ζ83ζ5-ζ8ζ54-ζ8ζ5 | ζ87ζ54+ζ87ζ5-ζ85ζ54-ζ85ζ5 | -ζ83ζ53-ζ83ζ52+ζ8ζ53+ζ8ζ52 | ζ83ζ53+ζ83ζ52-ζ8ζ53-ζ8ζ52 | symplectic faithful, Schur index 2 |
ρ24 | 4 | -4 | 0 | 0 | 0 | -1+√5 | -1-√5 | -2√2 | 2√2 | 1-√5 | 1+√5 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -ζ83ζ53-ζ83ζ52+ζ8ζ53+ζ8ζ52 | ζ83ζ53+ζ83ζ52-ζ8ζ53-ζ8ζ52 | ζ83ζ54+ζ83ζ5-ζ8ζ54-ζ8ζ5 | ζ87ζ54+ζ87ζ5-ζ85ζ54-ζ85ζ5 | symplectic faithful, Schur index 2 |
ρ25 | 4 | -4 | 0 | 0 | 0 | -1+√5 | -1-√5 | 2√2 | -2√2 | 1-√5 | 1+√5 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ζ83ζ53+ζ83ζ52-ζ8ζ53-ζ8ζ52 | -ζ83ζ53-ζ83ζ52+ζ8ζ53+ζ8ζ52 | ζ87ζ54+ζ87ζ5-ζ85ζ54-ζ85ζ5 | ζ83ζ54+ζ83ζ5-ζ8ζ54-ζ8ζ5 | symplectic faithful, Schur index 2 |
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64)(65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80)
(1 8)(2 7)(3 6)(4 5)(10 16)(11 15)(12 14)(17 19)(20 24)(21 23)(25 29)(26 28)(30 32)(33 39)(34 38)(35 37)(41 46)(42 45)(43 44)(47 48)(49 56)(50 55)(51 54)(52 53)(57 60)(58 59)(61 64)(62 63)(65 68)(66 67)(69 72)(70 71)(73 77)(74 76)(78 80)
(1 53 71 63 44)(2 54 72 64 45)(3 55 65 57 46)(4 56 66 58 47)(5 49 67 59 48)(6 50 68 60 41)(7 51 69 61 42)(8 52 70 62 43)(9 27 18 36 75)(10 28 19 37 76)(11 29 20 38 77)(12 30 21 39 78)(13 31 22 40 79)(14 32 23 33 80)(15 25 24 34 73)(16 26 17 35 74)
(1 32 5 28)(2 31 6 27)(3 30 7 26)(4 29 8 25)(9 54 13 50)(10 53 14 49)(11 52 15 56)(12 51 16 55)(17 46 21 42)(18 45 22 41)(19 44 23 48)(20 43 24 47)(33 59 37 63)(34 58 38 62)(35 57 39 61)(36 64 40 60)(65 78 69 74)(66 77 70 73)(67 76 71 80)(68 75 72 79)
G:=sub<Sym(80)| (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80), (1,8)(2,7)(3,6)(4,5)(10,16)(11,15)(12,14)(17,19)(20,24)(21,23)(25,29)(26,28)(30,32)(33,39)(34,38)(35,37)(41,46)(42,45)(43,44)(47,48)(49,56)(50,55)(51,54)(52,53)(57,60)(58,59)(61,64)(62,63)(65,68)(66,67)(69,72)(70,71)(73,77)(74,76)(78,80), (1,53,71,63,44)(2,54,72,64,45)(3,55,65,57,46)(4,56,66,58,47)(5,49,67,59,48)(6,50,68,60,41)(7,51,69,61,42)(8,52,70,62,43)(9,27,18,36,75)(10,28,19,37,76)(11,29,20,38,77)(12,30,21,39,78)(13,31,22,40,79)(14,32,23,33,80)(15,25,24,34,73)(16,26,17,35,74), (1,32,5,28)(2,31,6,27)(3,30,7,26)(4,29,8,25)(9,54,13,50)(10,53,14,49)(11,52,15,56)(12,51,16,55)(17,46,21,42)(18,45,22,41)(19,44,23,48)(20,43,24,47)(33,59,37,63)(34,58,38,62)(35,57,39,61)(36,64,40,60)(65,78,69,74)(66,77,70,73)(67,76,71,80)(68,75,72,79)>;
G:=Group( (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80), (1,8)(2,7)(3,6)(4,5)(10,16)(11,15)(12,14)(17,19)(20,24)(21,23)(25,29)(26,28)(30,32)(33,39)(34,38)(35,37)(41,46)(42,45)(43,44)(47,48)(49,56)(50,55)(51,54)(52,53)(57,60)(58,59)(61,64)(62,63)(65,68)(66,67)(69,72)(70,71)(73,77)(74,76)(78,80), (1,53,71,63,44)(2,54,72,64,45)(3,55,65,57,46)(4,56,66,58,47)(5,49,67,59,48)(6,50,68,60,41)(7,51,69,61,42)(8,52,70,62,43)(9,27,18,36,75)(10,28,19,37,76)(11,29,20,38,77)(12,30,21,39,78)(13,31,22,40,79)(14,32,23,33,80)(15,25,24,34,73)(16,26,17,35,74), (1,32,5,28)(2,31,6,27)(3,30,7,26)(4,29,8,25)(9,54,13,50)(10,53,14,49)(11,52,15,56)(12,51,16,55)(17,46,21,42)(18,45,22,41)(19,44,23,48)(20,43,24,47)(33,59,37,63)(34,58,38,62)(35,57,39,61)(36,64,40,60)(65,78,69,74)(66,77,70,73)(67,76,71,80)(68,75,72,79) );
G=PermutationGroup([[(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64),(65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80)], [(1,8),(2,7),(3,6),(4,5),(10,16),(11,15),(12,14),(17,19),(20,24),(21,23),(25,29),(26,28),(30,32),(33,39),(34,38),(35,37),(41,46),(42,45),(43,44),(47,48),(49,56),(50,55),(51,54),(52,53),(57,60),(58,59),(61,64),(62,63),(65,68),(66,67),(69,72),(70,71),(73,77),(74,76),(78,80)], [(1,53,71,63,44),(2,54,72,64,45),(3,55,65,57,46),(4,56,66,58,47),(5,49,67,59,48),(6,50,68,60,41),(7,51,69,61,42),(8,52,70,62,43),(9,27,18,36,75),(10,28,19,37,76),(11,29,20,38,77),(12,30,21,39,78),(13,31,22,40,79),(14,32,23,33,80),(15,25,24,34,73),(16,26,17,35,74)], [(1,32,5,28),(2,31,6,27),(3,30,7,26),(4,29,8,25),(9,54,13,50),(10,53,14,49),(11,52,15,56),(12,51,16,55),(17,46,21,42),(18,45,22,41),(19,44,23,48),(20,43,24,47),(33,59,37,63),(34,58,38,62),(35,57,39,61),(36,64,40,60),(65,78,69,74),(66,77,70,73),(67,76,71,80),(68,75,72,79)]])
D8.D5 is a maximal subgroup of
D16⋊D5 D16⋊3D5 D5×SD32 SD32⋊D5 D8.D10 C40.30C23 C40.31C23 C15⋊SD32 D24.D5 D8.D15
D8.D5 is a maximal quotient of
C10.SD32 C10.Q32 C10.D16 C15⋊SD32 D24.D5 D8.D15
Matrix representation of D8.D5 ►in GL4(𝔽241) generated by
11 | 230 | 0 | 0 |
11 | 11 | 0 | 0 |
0 | 0 | 240 | 0 |
0 | 0 | 0 | 240 |
11 | 230 | 0 | 0 |
230 | 230 | 0 | 0 |
0 | 0 | 240 | 0 |
0 | 0 | 195 | 1 |
1 | 0 | 0 | 0 |
0 | 1 | 0 | 0 |
0 | 0 | 98 | 0 |
0 | 0 | 161 | 91 |
200 | 103 | 0 | 0 |
103 | 41 | 0 | 0 |
0 | 0 | 142 | 151 |
0 | 0 | 216 | 99 |
G:=sub<GL(4,GF(241))| [11,11,0,0,230,11,0,0,0,0,240,0,0,0,0,240],[11,230,0,0,230,230,0,0,0,0,240,195,0,0,0,1],[1,0,0,0,0,1,0,0,0,0,98,161,0,0,0,91],[200,103,0,0,103,41,0,0,0,0,142,216,0,0,151,99] >;
D8.D5 in GAP, Magma, Sage, TeX
D_8.D_5
% in TeX
G:=Group("D8.D5");
// GroupNames label
G:=SmallGroup(160,34);
// by ID
G=gap.SmallGroup(160,34);
# by ID
G:=PCGroup([6,-2,-2,-2,-2,-2,-5,96,73,218,116,122,579,297,69,4613]);
// Polycyclic
G:=Group<a,b,c,d|a^8=b^2=c^5=1,d^2=a^4,b*a*b=d*a*d^-1=a^-1,a*c=c*a,b*c=c*b,d*b*d^-1=a^5*b,d*c*d^-1=c^-1>;
// generators/relations
Export
Subgroup lattice of D8.D5 in TeX
Character table of D8.D5 in TeX