Copied to
clipboard

G = C10×D9order 180 = 22·32·5

Direct product of C10 and D9

direct product, metacyclic, supersoluble, monomial, A-group, 2-hyperelementary

Aliases: C10×D9, C18⋊C10, C902C2, C30.6S3, C453C22, C15.3D6, C9⋊(C2×C10), C3.(S3×C10), C6.2(C5×S3), SmallGroup(180,10)

Series: Derived Chief Lower central Upper central

C1C9 — C10×D9
C1C3C9C45C5×D9 — C10×D9
C9 — C10×D9
C1C10

Generators and relations for C10×D9
 G = < a,b,c | a10=b9=c2=1, ab=ba, ac=ca, cbc=b-1 >

9C2
9C2
9C22
3S3
3S3
9C10
9C10
3D6
9C2×C10
3C5×S3
3C5×S3
3S3×C10

Smallest permutation representation of C10×D9
On 90 points
Generators in S90
(1 2 3 4 5 6 7 8 9 10)(11 12 13 14 15 16 17 18 19 20)(21 22 23 24 25 26 27 28 29 30)(31 32 33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48 49 50)(51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70)(71 72 73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88 89 90)
(1 27 34 13 83 53 79 67 41)(2 28 35 14 84 54 80 68 42)(3 29 36 15 85 55 71 69 43)(4 30 37 16 86 56 72 70 44)(5 21 38 17 87 57 73 61 45)(6 22 39 18 88 58 74 62 46)(7 23 40 19 89 59 75 63 47)(8 24 31 20 90 60 76 64 48)(9 25 32 11 81 51 77 65 49)(10 26 33 12 82 52 78 66 50)
(1 41)(2 42)(3 43)(4 44)(5 45)(6 46)(7 47)(8 48)(9 49)(10 50)(11 51)(12 52)(13 53)(14 54)(15 55)(16 56)(17 57)(18 58)(19 59)(20 60)(21 61)(22 62)(23 63)(24 64)(25 65)(26 66)(27 67)(28 68)(29 69)(30 70)(31 76)(32 77)(33 78)(34 79)(35 80)(36 71)(37 72)(38 73)(39 74)(40 75)

G:=sub<Sym(90)| (1,2,3,4,5,6,7,8,9,10)(11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50)(51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70)(71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90), (1,27,34,13,83,53,79,67,41)(2,28,35,14,84,54,80,68,42)(3,29,36,15,85,55,71,69,43)(4,30,37,16,86,56,72,70,44)(5,21,38,17,87,57,73,61,45)(6,22,39,18,88,58,74,62,46)(7,23,40,19,89,59,75,63,47)(8,24,31,20,90,60,76,64,48)(9,25,32,11,81,51,77,65,49)(10,26,33,12,82,52,78,66,50), (1,41)(2,42)(3,43)(4,44)(5,45)(6,46)(7,47)(8,48)(9,49)(10,50)(11,51)(12,52)(13,53)(14,54)(15,55)(16,56)(17,57)(18,58)(19,59)(20,60)(21,61)(22,62)(23,63)(24,64)(25,65)(26,66)(27,67)(28,68)(29,69)(30,70)(31,76)(32,77)(33,78)(34,79)(35,80)(36,71)(37,72)(38,73)(39,74)(40,75)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10)(11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50)(51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70)(71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90), (1,27,34,13,83,53,79,67,41)(2,28,35,14,84,54,80,68,42)(3,29,36,15,85,55,71,69,43)(4,30,37,16,86,56,72,70,44)(5,21,38,17,87,57,73,61,45)(6,22,39,18,88,58,74,62,46)(7,23,40,19,89,59,75,63,47)(8,24,31,20,90,60,76,64,48)(9,25,32,11,81,51,77,65,49)(10,26,33,12,82,52,78,66,50), (1,41)(2,42)(3,43)(4,44)(5,45)(6,46)(7,47)(8,48)(9,49)(10,50)(11,51)(12,52)(13,53)(14,54)(15,55)(16,56)(17,57)(18,58)(19,59)(20,60)(21,61)(22,62)(23,63)(24,64)(25,65)(26,66)(27,67)(28,68)(29,69)(30,70)(31,76)(32,77)(33,78)(34,79)(35,80)(36,71)(37,72)(38,73)(39,74)(40,75) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10),(11,12,13,14,15,16,17,18,19,20),(21,22,23,24,25,26,27,28,29,30),(31,32,33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48,49,50),(51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70),(71,72,73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88,89,90)], [(1,27,34,13,83,53,79,67,41),(2,28,35,14,84,54,80,68,42),(3,29,36,15,85,55,71,69,43),(4,30,37,16,86,56,72,70,44),(5,21,38,17,87,57,73,61,45),(6,22,39,18,88,58,74,62,46),(7,23,40,19,89,59,75,63,47),(8,24,31,20,90,60,76,64,48),(9,25,32,11,81,51,77,65,49),(10,26,33,12,82,52,78,66,50)], [(1,41),(2,42),(3,43),(4,44),(5,45),(6,46),(7,47),(8,48),(9,49),(10,50),(11,51),(12,52),(13,53),(14,54),(15,55),(16,56),(17,57),(18,58),(19,59),(20,60),(21,61),(22,62),(23,63),(24,64),(25,65),(26,66),(27,67),(28,68),(29,69),(30,70),(31,76),(32,77),(33,78),(34,79),(35,80),(36,71),(37,72),(38,73),(39,74),(40,75)]])

C10×D9 is a maximal subgroup of   C5⋊D36  C45⋊D4

60 conjugacy classes

class 1 2A2B2C 3 5A5B5C5D 6 9A9B9C10A10B10C10D10E···10L15A15B15C15D18A18B18C30A30B30C30D45A···45L90A···90L
order12223555569991010101010···10151515151818183030303045···4590···90
size119921111222211119···9222222222222···22···2

60 irreducible representations

dim11111122222222
type+++++++
imageC1C2C2C5C10C10S3D6D9C5×S3D18S3×C10C5×D9C10×D9
kernelC10×D9C5×D9C90D18D9C18C30C15C10C6C5C3C2C1
# reps1214841134341212

Matrix representation of C10×D9 in GL3(𝔽181) generated by

5600
010
001
,
100
0127131
050177
,
18000
0127131
0454
G:=sub<GL(3,GF(181))| [56,0,0,0,1,0,0,0,1],[1,0,0,0,127,50,0,131,177],[180,0,0,0,127,4,0,131,54] >;

C10×D9 in GAP, Magma, Sage, TeX

C_{10}\times D_9
% in TeX

G:=Group("C10xD9");
// GroupNames label

G:=SmallGroup(180,10);
// by ID

G=gap.SmallGroup(180,10);
# by ID

G:=PCGroup([5,-2,-2,-5,-3,-3,2003,138,3004]);
// Polycyclic

G:=Group<a,b,c|a^10=b^9=c^2=1,a*b=b*a,a*c=c*a,c*b*c=b^-1>;
// generators/relations

Export

Subgroup lattice of C10×D9 in TeX

׿
×
𝔽