Extensions 1→N→G→Q→1 with N=C15 and Q=D6

Direct product G=N×Q with N=C15 and Q=D6
dρLabelID
S3×C30602S3xC30180,33

Semidirect products G=N:Q with N=C15 and Q=D6
extensionφ:Q→Aut NdρLabelID
C151D6 = D5×C3⋊S3φ: D6/C3C22 ⊆ Aut C1545C15:1D6180,27
C152D6 = S3×D15φ: D6/C3C22 ⊆ Aut C15304+C15:2D6180,29
C153D6 = D15⋊S3φ: D6/C3C22 ⊆ Aut C15304C15:3D6180,30
C154D6 = C3×S3×D5φ: D6/S3C2 ⊆ Aut C15304C15:4D6180,26
C155D6 = C5×S32φ: D6/S3C2 ⊆ Aut C15304C15:5D6180,28
C156D6 = C2×C3⋊D15φ: D6/C6C2 ⊆ Aut C1590C15:6D6180,36
C157D6 = C6×D15φ: D6/C6C2 ⊆ Aut C15602C15:7D6180,34
C158D6 = C10×C3⋊S3φ: D6/C6C2 ⊆ Aut C1590C15:8D6180,35

Non-split extensions G=N.Q with N=C15 and Q=D6
extensionφ:Q→Aut NdρLabelID
C15.D6 = D5×D9φ: D6/C3C22 ⊆ Aut C15454+C15.D6180,7
C15.2D6 = D90φ: D6/C6C2 ⊆ Aut C15902+C15.2D6180,11
C15.3D6 = C10×D9φ: D6/C6C2 ⊆ Aut C15902C15.3D6180,10

׿
×
𝔽