direct product, metacyclic, supersoluble, monomial, A-group, 2-hyperelementary
Aliases: D90, C2×D45, C10⋊D9, C18⋊D5, C5⋊2D18, C9⋊2D10, C3.D30, C90⋊1C2, C30.2S3, C45⋊2C22, C6.2D15, C15.2D6, sometimes denoted D180 or Dih90 or Dih180, SmallGroup(180,11)
Series: Derived ►Chief ►Lower central ►Upper central
C45 — D90 |
Generators and relations for D90
G = < a,b | a90=b2=1, bab=a-1 >
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90)
(1 90)(2 89)(3 88)(4 87)(5 86)(6 85)(7 84)(8 83)(9 82)(10 81)(11 80)(12 79)(13 78)(14 77)(15 76)(16 75)(17 74)(18 73)(19 72)(20 71)(21 70)(22 69)(23 68)(24 67)(25 66)(26 65)(27 64)(28 63)(29 62)(30 61)(31 60)(32 59)(33 58)(34 57)(35 56)(36 55)(37 54)(38 53)(39 52)(40 51)(41 50)(42 49)(43 48)(44 47)(45 46)
G:=sub<Sym(90)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90), (1,90)(2,89)(3,88)(4,87)(5,86)(6,85)(7,84)(8,83)(9,82)(10,81)(11,80)(12,79)(13,78)(14,77)(15,76)(16,75)(17,74)(18,73)(19,72)(20,71)(21,70)(22,69)(23,68)(24,67)(25,66)(26,65)(27,64)(28,63)(29,62)(30,61)(31,60)(32,59)(33,58)(34,57)(35,56)(36,55)(37,54)(38,53)(39,52)(40,51)(41,50)(42,49)(43,48)(44,47)(45,46)>;
G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90), (1,90)(2,89)(3,88)(4,87)(5,86)(6,85)(7,84)(8,83)(9,82)(10,81)(11,80)(12,79)(13,78)(14,77)(15,76)(16,75)(17,74)(18,73)(19,72)(20,71)(21,70)(22,69)(23,68)(24,67)(25,66)(26,65)(27,64)(28,63)(29,62)(30,61)(31,60)(32,59)(33,58)(34,57)(35,56)(36,55)(37,54)(38,53)(39,52)(40,51)(41,50)(42,49)(43,48)(44,47)(45,46) );
G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90)], [(1,90),(2,89),(3,88),(4,87),(5,86),(6,85),(7,84),(8,83),(9,82),(10,81),(11,80),(12,79),(13,78),(14,77),(15,76),(16,75),(17,74),(18,73),(19,72),(20,71),(21,70),(22,69),(23,68),(24,67),(25,66),(26,65),(27,64),(28,63),(29,62),(30,61),(31,60),(32,59),(33,58),(34,57),(35,56),(36,55),(37,54),(38,53),(39,52),(40,51),(41,50),(42,49),(43,48),(44,47),(45,46)]])
D90 is a maximal subgroup of
D90.C2 C5⋊D36 C9⋊D20 D180 C45⋊7D4 C2×D5×D9
D90 is a maximal quotient of Dic90 D180 C45⋊7D4
48 conjugacy classes
class | 1 | 2A | 2B | 2C | 3 | 5A | 5B | 6 | 9A | 9B | 9C | 10A | 10B | 15A | 15B | 15C | 15D | 18A | 18B | 18C | 30A | 30B | 30C | 30D | 45A | ··· | 45L | 90A | ··· | 90L |
order | 1 | 2 | 2 | 2 | 3 | 5 | 5 | 6 | 9 | 9 | 9 | 10 | 10 | 15 | 15 | 15 | 15 | 18 | 18 | 18 | 30 | 30 | 30 | 30 | 45 | ··· | 45 | 90 | ··· | 90 |
size | 1 | 1 | 45 | 45 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | ··· | 2 | 2 | ··· | 2 |
48 irreducible representations
dim | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 |
type | + | + | + | + | + | + | + | + | + | + | + | + | + |
image | C1 | C2 | C2 | S3 | D5 | D6 | D9 | D10 | D15 | D18 | D30 | D45 | D90 |
kernel | D90 | D45 | C90 | C30 | C18 | C15 | C10 | C9 | C6 | C5 | C3 | C2 | C1 |
# reps | 1 | 2 | 1 | 1 | 2 | 1 | 3 | 2 | 4 | 3 | 4 | 12 | 12 |
Matrix representation of D90 ►in GL4(𝔽181) generated by
1 | 14 | 0 | 0 |
167 | 167 | 0 | 0 |
0 | 0 | 88 | 129 |
0 | 0 | 52 | 140 |
1 | 14 | 0 | 0 |
0 | 180 | 0 | 0 |
0 | 0 | 88 | 129 |
0 | 0 | 41 | 93 |
G:=sub<GL(4,GF(181))| [1,167,0,0,14,167,0,0,0,0,88,52,0,0,129,140],[1,0,0,0,14,180,0,0,0,0,88,41,0,0,129,93] >;
D90 in GAP, Magma, Sage, TeX
D_{90}
% in TeX
G:=Group("D90");
// GroupNames label
G:=SmallGroup(180,11);
// by ID
G=gap.SmallGroup(180,11);
# by ID
G:=PCGroup([5,-2,-2,-3,-5,-3,1022,462,963,3004]);
// Polycyclic
G:=Group<a,b|a^90=b^2=1,b*a*b=a^-1>;
// generators/relations
Export