Copied to
clipboard

G = C2×C4×C7⋊C3order 168 = 23·3·7

Direct product of C2×C4 and C7⋊C3

direct product, metacyclic, supersoluble, monomial, A-group

Aliases: C2×C4×C7⋊C3, C284C6, C142C12, (C2×C28)⋊C3, C73(C2×C12), (C2×C14).2C6, C14.6(C2×C6), C22.(C2×C7⋊C3), C2.1(C22×C7⋊C3), (C22×C7⋊C3).2C2, (C2×C7⋊C3).6C22, SmallGroup(168,19)

Series: Derived Chief Lower central Upper central

C1C7 — C2×C4×C7⋊C3
C1C7C14C2×C7⋊C3C22×C7⋊C3 — C2×C4×C7⋊C3
C7 — C2×C4×C7⋊C3
C1C2×C4

Generators and relations for C2×C4×C7⋊C3
 G = < a,b,c,d | a2=b4=c7=d3=1, ab=ba, ac=ca, ad=da, bc=cb, bd=db, dcd-1=c4 >

7C3
7C6
7C6
7C6
7C12
7C2×C6
7C12
7C2×C12

Smallest permutation representation of C2×C4×C7⋊C3
On 56 points
Generators in S56
(1 36)(2 37)(3 38)(4 39)(5 40)(6 41)(7 42)(8 29)(9 30)(10 31)(11 32)(12 33)(13 34)(14 35)(15 50)(16 51)(17 52)(18 53)(19 54)(20 55)(21 56)(22 43)(23 44)(24 45)(25 46)(26 47)(27 48)(28 49)
(1 15 8 22)(2 16 9 23)(3 17 10 24)(4 18 11 25)(5 19 12 26)(6 20 13 27)(7 21 14 28)(29 43 36 50)(30 44 37 51)(31 45 38 52)(32 46 39 53)(33 47 40 54)(34 48 41 55)(35 49 42 56)
(1 2 3 4 5 6 7)(8 9 10 11 12 13 14)(15 16 17 18 19 20 21)(22 23 24 25 26 27 28)(29 30 31 32 33 34 35)(36 37 38 39 40 41 42)(43 44 45 46 47 48 49)(50 51 52 53 54 55 56)
(2 3 5)(4 7 6)(9 10 12)(11 14 13)(16 17 19)(18 21 20)(23 24 26)(25 28 27)(30 31 33)(32 35 34)(37 38 40)(39 42 41)(44 45 47)(46 49 48)(51 52 54)(53 56 55)

G:=sub<Sym(56)| (1,36)(2,37)(3,38)(4,39)(5,40)(6,41)(7,42)(8,29)(9,30)(10,31)(11,32)(12,33)(13,34)(14,35)(15,50)(16,51)(17,52)(18,53)(19,54)(20,55)(21,56)(22,43)(23,44)(24,45)(25,46)(26,47)(27,48)(28,49), (1,15,8,22)(2,16,9,23)(3,17,10,24)(4,18,11,25)(5,19,12,26)(6,20,13,27)(7,21,14,28)(29,43,36,50)(30,44,37,51)(31,45,38,52)(32,46,39,53)(33,47,40,54)(34,48,41,55)(35,49,42,56), (1,2,3,4,5,6,7)(8,9,10,11,12,13,14)(15,16,17,18,19,20,21)(22,23,24,25,26,27,28)(29,30,31,32,33,34,35)(36,37,38,39,40,41,42)(43,44,45,46,47,48,49)(50,51,52,53,54,55,56), (2,3,5)(4,7,6)(9,10,12)(11,14,13)(16,17,19)(18,21,20)(23,24,26)(25,28,27)(30,31,33)(32,35,34)(37,38,40)(39,42,41)(44,45,47)(46,49,48)(51,52,54)(53,56,55)>;

G:=Group( (1,36)(2,37)(3,38)(4,39)(5,40)(6,41)(7,42)(8,29)(9,30)(10,31)(11,32)(12,33)(13,34)(14,35)(15,50)(16,51)(17,52)(18,53)(19,54)(20,55)(21,56)(22,43)(23,44)(24,45)(25,46)(26,47)(27,48)(28,49), (1,15,8,22)(2,16,9,23)(3,17,10,24)(4,18,11,25)(5,19,12,26)(6,20,13,27)(7,21,14,28)(29,43,36,50)(30,44,37,51)(31,45,38,52)(32,46,39,53)(33,47,40,54)(34,48,41,55)(35,49,42,56), (1,2,3,4,5,6,7)(8,9,10,11,12,13,14)(15,16,17,18,19,20,21)(22,23,24,25,26,27,28)(29,30,31,32,33,34,35)(36,37,38,39,40,41,42)(43,44,45,46,47,48,49)(50,51,52,53,54,55,56), (2,3,5)(4,7,6)(9,10,12)(11,14,13)(16,17,19)(18,21,20)(23,24,26)(25,28,27)(30,31,33)(32,35,34)(37,38,40)(39,42,41)(44,45,47)(46,49,48)(51,52,54)(53,56,55) );

G=PermutationGroup([[(1,36),(2,37),(3,38),(4,39),(5,40),(6,41),(7,42),(8,29),(9,30),(10,31),(11,32),(12,33),(13,34),(14,35),(15,50),(16,51),(17,52),(18,53),(19,54),(20,55),(21,56),(22,43),(23,44),(24,45),(25,46),(26,47),(27,48),(28,49)], [(1,15,8,22),(2,16,9,23),(3,17,10,24),(4,18,11,25),(5,19,12,26),(6,20,13,27),(7,21,14,28),(29,43,36,50),(30,44,37,51),(31,45,38,52),(32,46,39,53),(33,47,40,54),(34,48,41,55),(35,49,42,56)], [(1,2,3,4,5,6,7),(8,9,10,11,12,13,14),(15,16,17,18,19,20,21),(22,23,24,25,26,27,28),(29,30,31,32,33,34,35),(36,37,38,39,40,41,42),(43,44,45,46,47,48,49),(50,51,52,53,54,55,56)], [(2,3,5),(4,7,6),(9,10,12),(11,14,13),(16,17,19),(18,21,20),(23,24,26),(25,28,27),(30,31,33),(32,35,34),(37,38,40),(39,42,41),(44,45,47),(46,49,48),(51,52,54),(53,56,55)]])

C2×C4×C7⋊C3 is a maximal subgroup of   C28.C12  Dic7⋊C12  C28⋊C12  D14⋊C12  D286C6

40 conjugacy classes

class 1 2A2B2C3A3B4A4B4C4D6A···6F7A7B12A···12H14A···14F28A···28H
order12223344446···67712···1214···1428···28
size11117711117···7337···73···33···3

40 irreducible representations

dim111111113333
type+++
imageC1C2C2C3C4C6C6C12C7⋊C3C2×C7⋊C3C2×C7⋊C3C4×C7⋊C3
kernelC2×C4×C7⋊C3C4×C7⋊C3C22×C7⋊C3C2×C28C2×C7⋊C3C28C2×C14C14C2×C4C4C22C2
# reps121244282428

Matrix representation of C2×C4×C7⋊C3 in GL4(𝔽337) generated by

336000
0100
0010
0001
,
148000
018900
001890
000189
,
1000
01241251
0100
0010
,
128000
0100
0212336336
0010
G:=sub<GL(4,GF(337))| [336,0,0,0,0,1,0,0,0,0,1,0,0,0,0,1],[148,0,0,0,0,189,0,0,0,0,189,0,0,0,0,189],[1,0,0,0,0,124,1,0,0,125,0,1,0,1,0,0],[128,0,0,0,0,1,212,0,0,0,336,1,0,0,336,0] >;

C2×C4×C7⋊C3 in GAP, Magma, Sage, TeX

C_2\times C_4\times C_7\rtimes C_3
% in TeX

G:=Group("C2xC4xC7:C3");
// GroupNames label

G:=SmallGroup(168,19);
// by ID

G=gap.SmallGroup(168,19);
# by ID

G:=PCGroup([5,-2,-2,-3,-2,-7,66,314]);
// Polycyclic

G:=Group<a,b,c,d|a^2=b^4=c^7=d^3=1,a*b=b*a,a*c=c*a,a*d=d*a,b*c=c*b,b*d=d*b,d*c*d^-1=c^4>;
// generators/relations

Export

Subgroup lattice of C2×C4×C7⋊C3 in TeX

׿
×
𝔽