Extensions 1→N→G→Q→1 with N=C28 and Q=C6

Direct product G=N×Q with N=C28 and Q=C6
dρLabelID
C2×C84168C2xC84168,39

Semidirect products G=N:Q with N=C28 and Q=C6
extensionφ:Q→Aut NdρLabelID
C281C6 = C4⋊F7φ: C6/C1C6 ⊆ Aut C28286+C28:1C6168,9
C282C6 = C4×F7φ: C6/C1C6 ⊆ Aut C28286C28:2C6168,8
C283C6 = D4×C7⋊C3φ: C6/C1C6 ⊆ Aut C28286C28:3C6168,20
C284C6 = C2×C4×C7⋊C3φ: C6/C2C3 ⊆ Aut C2856C28:4C6168,19
C285C6 = C3×D28φ: C6/C3C2 ⊆ Aut C28842C28:5C6168,26
C286C6 = C12×D7φ: C6/C3C2 ⊆ Aut C28842C28:6C6168,25
C287C6 = D4×C21φ: C6/C3C2 ⊆ Aut C28842C28:7C6168,40

Non-split extensions G=N.Q with N=C28 and Q=C6
extensionφ:Q→Aut NdρLabelID
C28.1C6 = C4.F7φ: C6/C1C6 ⊆ Aut C28566-C28.1C6168,7
C28.2C6 = C7⋊C24φ: C6/C1C6 ⊆ Aut C28566C28.2C6168,1
C28.3C6 = Q8×C7⋊C3φ: C6/C1C6 ⊆ Aut C28566C28.3C6168,21
C28.4C6 = C8×C7⋊C3φ: C6/C2C3 ⊆ Aut C28563C28.4C6168,2
C28.5C6 = C3×Dic14φ: C6/C3C2 ⊆ Aut C281682C28.5C6168,24
C28.6C6 = C3×C7⋊C8φ: C6/C3C2 ⊆ Aut C281682C28.6C6168,4
C28.7C6 = Q8×C21φ: C6/C3C2 ⊆ Aut C281682C28.7C6168,41

׿
×
𝔽