direct product, abelian, monomial, 2-elementary
Aliases: C2×C86, SmallGroup(172,4)
Series: Derived ►Chief ►Lower central ►Upper central
C1 — C2×C86 |
C1 — C2×C86 |
C1 — C2×C86 |
Generators and relations for C2×C86
G = < a,b | a2=b86=1, ab=ba >
(1 131)(2 132)(3 133)(4 134)(5 135)(6 136)(7 137)(8 138)(9 139)(10 140)(11 141)(12 142)(13 143)(14 144)(15 145)(16 146)(17 147)(18 148)(19 149)(20 150)(21 151)(22 152)(23 153)(24 154)(25 155)(26 156)(27 157)(28 158)(29 159)(30 160)(31 161)(32 162)(33 163)(34 164)(35 165)(36 166)(37 167)(38 168)(39 169)(40 170)(41 171)(42 172)(43 87)(44 88)(45 89)(46 90)(47 91)(48 92)(49 93)(50 94)(51 95)(52 96)(53 97)(54 98)(55 99)(56 100)(57 101)(58 102)(59 103)(60 104)(61 105)(62 106)(63 107)(64 108)(65 109)(66 110)(67 111)(68 112)(69 113)(70 114)(71 115)(72 116)(73 117)(74 118)(75 119)(76 120)(77 121)(78 122)(79 123)(80 124)(81 125)(82 126)(83 127)(84 128)(85 129)(86 130)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86)(87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172)
G:=sub<Sym(172)| (1,131)(2,132)(3,133)(4,134)(5,135)(6,136)(7,137)(8,138)(9,139)(10,140)(11,141)(12,142)(13,143)(14,144)(15,145)(16,146)(17,147)(18,148)(19,149)(20,150)(21,151)(22,152)(23,153)(24,154)(25,155)(26,156)(27,157)(28,158)(29,159)(30,160)(31,161)(32,162)(33,163)(34,164)(35,165)(36,166)(37,167)(38,168)(39,169)(40,170)(41,171)(42,172)(43,87)(44,88)(45,89)(46,90)(47,91)(48,92)(49,93)(50,94)(51,95)(52,96)(53,97)(54,98)(55,99)(56,100)(57,101)(58,102)(59,103)(60,104)(61,105)(62,106)(63,107)(64,108)(65,109)(66,110)(67,111)(68,112)(69,113)(70,114)(71,115)(72,116)(73,117)(74,118)(75,119)(76,120)(77,121)(78,122)(79,123)(80,124)(81,125)(82,126)(83,127)(84,128)(85,129)(86,130), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86)(87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172)>;
G:=Group( (1,131)(2,132)(3,133)(4,134)(5,135)(6,136)(7,137)(8,138)(9,139)(10,140)(11,141)(12,142)(13,143)(14,144)(15,145)(16,146)(17,147)(18,148)(19,149)(20,150)(21,151)(22,152)(23,153)(24,154)(25,155)(26,156)(27,157)(28,158)(29,159)(30,160)(31,161)(32,162)(33,163)(34,164)(35,165)(36,166)(37,167)(38,168)(39,169)(40,170)(41,171)(42,172)(43,87)(44,88)(45,89)(46,90)(47,91)(48,92)(49,93)(50,94)(51,95)(52,96)(53,97)(54,98)(55,99)(56,100)(57,101)(58,102)(59,103)(60,104)(61,105)(62,106)(63,107)(64,108)(65,109)(66,110)(67,111)(68,112)(69,113)(70,114)(71,115)(72,116)(73,117)(74,118)(75,119)(76,120)(77,121)(78,122)(79,123)(80,124)(81,125)(82,126)(83,127)(84,128)(85,129)(86,130), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86)(87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172) );
G=PermutationGroup([[(1,131),(2,132),(3,133),(4,134),(5,135),(6,136),(7,137),(8,138),(9,139),(10,140),(11,141),(12,142),(13,143),(14,144),(15,145),(16,146),(17,147),(18,148),(19,149),(20,150),(21,151),(22,152),(23,153),(24,154),(25,155),(26,156),(27,157),(28,158),(29,159),(30,160),(31,161),(32,162),(33,163),(34,164),(35,165),(36,166),(37,167),(38,168),(39,169),(40,170),(41,171),(42,172),(43,87),(44,88),(45,89),(46,90),(47,91),(48,92),(49,93),(50,94),(51,95),(52,96),(53,97),(54,98),(55,99),(56,100),(57,101),(58,102),(59,103),(60,104),(61,105),(62,106),(63,107),(64,108),(65,109),(66,110),(67,111),(68,112),(69,113),(70,114),(71,115),(72,116),(73,117),(74,118),(75,119),(76,120),(77,121),(78,122),(79,123),(80,124),(81,125),(82,126),(83,127),(84,128),(85,129),(86,130)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86),(87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172)]])
C2×C86 is a maximal subgroup of
C43⋊D4
172 conjugacy classes
class | 1 | 2A | 2B | 2C | 43A | ··· | 43AP | 86A | ··· | 86DV |
order | 1 | 2 | 2 | 2 | 43 | ··· | 43 | 86 | ··· | 86 |
size | 1 | 1 | 1 | 1 | 1 | ··· | 1 | 1 | ··· | 1 |
172 irreducible representations
dim | 1 | 1 | 1 | 1 |
type | + | + | ||
image | C1 | C2 | C43 | C86 |
kernel | C2×C86 | C86 | C22 | C2 |
# reps | 1 | 3 | 42 | 126 |
Matrix representation of C2×C86 ►in GL2(𝔽173) generated by
172 | 0 |
0 | 1 |
56 | 0 |
0 | 40 |
G:=sub<GL(2,GF(173))| [172,0,0,1],[56,0,0,40] >;
C2×C86 in GAP, Magma, Sage, TeX
C_2\times C_{86}
% in TeX
G:=Group("C2xC86");
// GroupNames label
G:=SmallGroup(172,4);
// by ID
G=gap.SmallGroup(172,4);
# by ID
G:=PCGroup([3,-2,-2,-43]);
// Polycyclic
G:=Group<a,b|a^2=b^86=1,a*b=b*a>;
// generators/relations
Export