Copied to
clipboard

G = Q8⋊D21order 336 = 24·3·7

The semidirect product of Q8 and D21 acting via D21/C7=S3

non-abelian, soluble

Aliases: Q8⋊D21, C14.2S4, C7⋊GL2(𝔽3), SL2(𝔽3)⋊D7, C2.3(C7⋊S4), (C7×Q8)⋊1S3, (C7×SL2(𝔽3))⋊1C2, SmallGroup(336,119)

Series: Derived Chief Lower central Upper central

C1C2Q8C7×SL2(𝔽3) — Q8⋊D21
C1C2Q8C7×Q8C7×SL2(𝔽3) — Q8⋊D21
C7×SL2(𝔽3) — Q8⋊D21
C1C2

Generators and relations for Q8⋊D21
 G = < a,b,c,d | a4=c21=d2=1, b2=a2, bab-1=a-1, cac-1=b, dad=a-1b, cbc-1=ab, dbd=a2b, dcd=c-1 >

84C2
4C3
3C4
42C22
4C6
28S3
28S3
12D7
4C21
21D4
21C8
28D6
3C28
6D14
4D21
4D21
4C42
21SD16
3D28
3C7⋊C8
4D42
7GL2(𝔽3)
3Q8⋊D7

Character table of Q8⋊D21

 class 12A2B3467A7B7C8A8B14A14B14C21A21B21C21D21E21F28A28B28C42A42B42C42D42E42F
 size 11848682224242222888888121212888888
ρ111111111111111111111111111111    trivial
ρ211-1111111-1-1111111111111111111    linear of order 2
ρ3220-12-122200222-1-1-1-1-1-1222-1-1-1-1-1-1    orthogonal lifted from S3
ρ4220222ζ767ζ7572ζ747300ζ7572ζ7473ζ767ζ7572ζ767ζ7572ζ767ζ7473ζ7473ζ7572ζ767ζ7473ζ7572ζ7473ζ7473ζ7572ζ767ζ767    orthogonal lifted from D7
ρ5220222ζ7473ζ767ζ757200ζ767ζ7572ζ7473ζ767ζ7473ζ767ζ7473ζ7572ζ7572ζ767ζ7473ζ7572ζ767ζ7572ζ7572ζ767ζ7473ζ7473    orthogonal lifted from D7
ρ6220222ζ7572ζ7473ζ76700ζ7473ζ767ζ7572ζ7473ζ7572ζ7473ζ7572ζ767ζ767ζ7473ζ7572ζ767ζ7473ζ767ζ767ζ7473ζ7572ζ7572    orthogonal lifted from D7
ρ7220-12-1ζ767ζ7572ζ747300ζ7572ζ7473ζ767ζ3ζ753ζ727232ζ7632ζ7763ζ753ζ7275ζ32ζ7632ζ7732ζ7432ζ73743ζ743ζ7374ζ7572ζ767ζ74733ζ753ζ72753ζ743ζ737432ζ7432ζ7374ζ3ζ753ζ727232ζ7632ζ776ζ32ζ7632ζ77    orthogonal lifted from D21
ρ8220-12-1ζ7572ζ7473ζ76700ζ7473ζ767ζ75723ζ743ζ7374ζ3ζ753ζ727232ζ7432ζ73743ζ753ζ7275ζ32ζ7632ζ7732ζ7632ζ776ζ7473ζ7572ζ76732ζ7432ζ737432ζ7632ζ776ζ32ζ7632ζ773ζ743ζ7374ζ3ζ753ζ72723ζ753ζ7275    orthogonal lifted from D21
ρ9220-12-1ζ7473ζ767ζ757200ζ767ζ7572ζ7473ζ32ζ7632ζ7732ζ7432ζ737432ζ7632ζ7763ζ743ζ7374ζ3ζ753ζ72723ζ753ζ7275ζ767ζ7473ζ757232ζ7632ζ7763ζ753ζ7275ζ3ζ753ζ7272ζ32ζ7632ζ7732ζ7432ζ73743ζ743ζ7374    orthogonal lifted from D21
ρ10220-12-1ζ7473ζ767ζ757200ζ767ζ7572ζ747332ζ7632ζ7763ζ743ζ7374ζ32ζ7632ζ7732ζ7432ζ73743ζ753ζ7275ζ3ζ753ζ7272ζ767ζ7473ζ7572ζ32ζ7632ζ77ζ3ζ753ζ72723ζ753ζ727532ζ7632ζ7763ζ743ζ737432ζ7432ζ7374    orthogonal lifted from D21
ρ11220-12-1ζ7572ζ7473ζ76700ζ7473ζ767ζ757232ζ7432ζ73743ζ753ζ72753ζ743ζ7374ζ3ζ753ζ727232ζ7632ζ776ζ32ζ7632ζ77ζ7473ζ7572ζ7673ζ743ζ7374ζ32ζ7632ζ7732ζ7632ζ77632ζ7432ζ73743ζ753ζ7275ζ3ζ753ζ7272    orthogonal lifted from D21
ρ12220-12-1ζ767ζ7572ζ747300ζ7572ζ7473ζ7673ζ753ζ7275ζ32ζ7632ζ77ζ3ζ753ζ727232ζ7632ζ7763ζ743ζ737432ζ7432ζ7374ζ7572ζ767ζ7473ζ3ζ753ζ727232ζ7432ζ73743ζ743ζ73743ζ753ζ7275ζ32ζ7632ζ7732ζ7632ζ776    orthogonal lifted from D21
ρ132-20-101222-2--2-2-2-2-1-1-1-1-1-1000111111    complex lifted from GL2(𝔽3)
ρ142-20-101222--2-2-2-2-2-1-1-1-1-1-1000111111    complex lifted from GL2(𝔽3)
ρ1533-10-1033311333000000-1-1-1000000    orthogonal lifted from S4
ρ163310-10333-1-1333000000-1-1-1000000    orthogonal lifted from S4
ρ174-4010-144400-4-4-4111111000-1-1-1-1-1-1    orthogonal lifted from GL2(𝔽3)
ρ184-40-20274+2ζ7376+2ζ775+2ζ7200-2ζ76-2ζ7-2ζ75-2ζ72-2ζ74-2ζ737677473767747375727572000ζ767ζ7572ζ7572ζ767ζ7473ζ7473    orthogonal faithful, Schur index 2
ρ194-40-20275+2ζ7274+2ζ7376+2ζ700-2ζ74-2ζ73-2ζ76-2ζ7-2ζ75-2ζ727473757274737572767767000ζ7473ζ767ζ767ζ7473ζ7572ζ7572    orthogonal faithful, Schur index 2
ρ204-40-20276+2ζ775+2ζ7274+2ζ7300-2ζ75-2ζ72-2ζ74-2ζ73-2ζ76-2ζ77572767757276774737473000ζ7572ζ7473ζ7473ζ7572ζ767ζ767    orthogonal faithful, Schur index 2
ρ214-4010-176+2ζ775+2ζ7274+2ζ7300-2ζ75-2ζ72-2ζ74-2ζ73-2ζ76-2ζ7ζ3ζ753ζ7275ζ3ζ763ζ776ζ32ζ7532ζ72753ζ763ζ7732ζ7432ζ7373ζ32ζ7432ζ7374000ζ3ζ753ζ727232ζ7432ζ73743ζ743ζ73743ζ753ζ7275ζ32ζ7632ζ7732ζ7632ζ776    orthogonal faithful
ρ224-4010-174+2ζ7376+2ζ775+2ζ7200-2ζ76-2ζ7-2ζ75-2ζ72-2ζ74-2ζ73ζ3ζ763ζ776ζ32ζ7432ζ73743ζ763ζ7732ζ7432ζ7373ζ32ζ7532ζ7275ζ3ζ753ζ727500032ζ7632ζ7763ζ753ζ7275ζ3ζ753ζ7272ζ32ζ7632ζ7732ζ7432ζ73743ζ743ζ7374    orthogonal faithful
ρ234-4010-175+2ζ7274+2ζ7376+2ζ700-2ζ74-2ζ73-2ζ76-2ζ7-2ζ75-2ζ72ζ32ζ7432ζ7374ζ3ζ753ζ727532ζ7432ζ7373ζ32ζ7532ζ72753ζ763ζ77ζ3ζ763ζ7760003ζ743ζ7374ζ32ζ7632ζ7732ζ7632ζ77632ζ7432ζ73743ζ753ζ7275ζ3ζ753ζ7272    orthogonal faithful
ρ244-4010-176+2ζ775+2ζ7274+2ζ7300-2ζ75-2ζ72-2ζ74-2ζ73-2ζ76-2ζ7ζ32ζ7532ζ72753ζ763ζ77ζ3ζ753ζ7275ζ3ζ763ζ776ζ32ζ7432ζ737432ζ7432ζ73730003ζ753ζ72753ζ743ζ737432ζ7432ζ7374ζ3ζ753ζ727232ζ7632ζ776ζ32ζ7632ζ77    orthogonal faithful
ρ254-4010-175+2ζ7274+2ζ7376+2ζ700-2ζ74-2ζ73-2ζ76-2ζ7-2ζ75-2ζ7232ζ7432ζ7373ζ32ζ7532ζ7275ζ32ζ7432ζ7374ζ3ζ753ζ7275ζ3ζ763ζ7763ζ763ζ7700032ζ7432ζ737432ζ7632ζ776ζ32ζ7632ζ773ζ743ζ7374ζ3ζ753ζ72723ζ753ζ7275    orthogonal faithful
ρ264-4010-174+2ζ7376+2ζ775+2ζ7200-2ζ76-2ζ7-2ζ75-2ζ72-2ζ74-2ζ733ζ763ζ7732ζ7432ζ7373ζ3ζ763ζ776ζ32ζ7432ζ7374ζ3ζ753ζ7275ζ32ζ7532ζ7275000ζ32ζ7632ζ77ζ3ζ753ζ72723ζ753ζ727532ζ7632ζ7763ζ743ζ737432ζ7432ζ7374    orthogonal faithful
ρ276600-2076+3ζ775+3ζ7274+3ζ730075+3ζ7274+3ζ7376+3ζ700000075727677473000000    orthogonal lifted from C7⋊S4
ρ286600-2075+3ζ7274+3ζ7376+3ζ70074+3ζ7376+3ζ775+3ζ7200000074737572767000000    orthogonal lifted from C7⋊S4
ρ296600-2074+3ζ7376+3ζ775+3ζ720076+3ζ775+3ζ7274+3ζ7300000076774737572000000    orthogonal lifted from C7⋊S4

Smallest permutation representation of Q8⋊D21
On 56 points
Generators in S56
(1 54 8 21)(2 48 9 15)(3 42 10 30)(4 36 11 24)(5 51 12 18)(6 45 13 33)(7 39 14 27)(16 23 49 56)(17 43 50 31)(19 26 52 38)(20 46 53 34)(22 29 55 41)(25 32 37 44)(28 35 40 47)
(1 47 8 35)(2 41 9 29)(3 56 10 23)(4 50 11 17)(5 44 12 32)(6 38 13 26)(7 53 14 20)(15 22 48 55)(16 42 49 30)(18 25 51 37)(19 45 52 33)(21 28 54 40)(24 31 36 43)(27 34 39 46)
(1 2 3 4 5 6 7)(8 9 10 11 12 13 14)(15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35)(36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56)
(1 5)(2 4)(6 7)(8 12)(9 11)(13 14)(15 43)(16 42)(17 41)(18 40)(19 39)(20 38)(21 37)(22 36)(23 56)(24 55)(25 54)(26 53)(27 52)(28 51)(29 50)(30 49)(31 48)(32 47)(33 46)(34 45)(35 44)

G:=sub<Sym(56)| (1,54,8,21)(2,48,9,15)(3,42,10,30)(4,36,11,24)(5,51,12,18)(6,45,13,33)(7,39,14,27)(16,23,49,56)(17,43,50,31)(19,26,52,38)(20,46,53,34)(22,29,55,41)(25,32,37,44)(28,35,40,47), (1,47,8,35)(2,41,9,29)(3,56,10,23)(4,50,11,17)(5,44,12,32)(6,38,13,26)(7,53,14,20)(15,22,48,55)(16,42,49,30)(18,25,51,37)(19,45,52,33)(21,28,54,40)(24,31,36,43)(27,34,39,46), (1,2,3,4,5,6,7)(8,9,10,11,12,13,14)(15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35)(36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56), (1,5)(2,4)(6,7)(8,12)(9,11)(13,14)(15,43)(16,42)(17,41)(18,40)(19,39)(20,38)(21,37)(22,36)(23,56)(24,55)(25,54)(26,53)(27,52)(28,51)(29,50)(30,49)(31,48)(32,47)(33,46)(34,45)(35,44)>;

G:=Group( (1,54,8,21)(2,48,9,15)(3,42,10,30)(4,36,11,24)(5,51,12,18)(6,45,13,33)(7,39,14,27)(16,23,49,56)(17,43,50,31)(19,26,52,38)(20,46,53,34)(22,29,55,41)(25,32,37,44)(28,35,40,47), (1,47,8,35)(2,41,9,29)(3,56,10,23)(4,50,11,17)(5,44,12,32)(6,38,13,26)(7,53,14,20)(15,22,48,55)(16,42,49,30)(18,25,51,37)(19,45,52,33)(21,28,54,40)(24,31,36,43)(27,34,39,46), (1,2,3,4,5,6,7)(8,9,10,11,12,13,14)(15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35)(36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56), (1,5)(2,4)(6,7)(8,12)(9,11)(13,14)(15,43)(16,42)(17,41)(18,40)(19,39)(20,38)(21,37)(22,36)(23,56)(24,55)(25,54)(26,53)(27,52)(28,51)(29,50)(30,49)(31,48)(32,47)(33,46)(34,45)(35,44) );

G=PermutationGroup([[(1,54,8,21),(2,48,9,15),(3,42,10,30),(4,36,11,24),(5,51,12,18),(6,45,13,33),(7,39,14,27),(16,23,49,56),(17,43,50,31),(19,26,52,38),(20,46,53,34),(22,29,55,41),(25,32,37,44),(28,35,40,47)], [(1,47,8,35),(2,41,9,29),(3,56,10,23),(4,50,11,17),(5,44,12,32),(6,38,13,26),(7,53,14,20),(15,22,48,55),(16,42,49,30),(18,25,51,37),(19,45,52,33),(21,28,54,40),(24,31,36,43),(27,34,39,46)], [(1,2,3,4,5,6,7),(8,9,10,11,12,13,14),(15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35),(36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56)], [(1,5),(2,4),(6,7),(8,12),(9,11),(13,14),(15,43),(16,42),(17,41),(18,40),(19,39),(20,38),(21,37),(22,36),(23,56),(24,55),(25,54),(26,53),(27,52),(28,51),(29,50),(30,49),(31,48),(32,47),(33,46),(34,45),(35,44)]])

Matrix representation of Q8⋊D21 in GL4(𝔽337) generated by

1000
0100
003281
00277334
,
1000
0100
00278335
005659
,
2742000
25723400
005659
003280
,
24728700
3179000
00186282
00292151
G:=sub<GL(4,GF(337))| [1,0,0,0,0,1,0,0,0,0,3,277,0,0,281,334],[1,0,0,0,0,1,0,0,0,0,278,56,0,0,335,59],[274,257,0,0,20,234,0,0,0,0,56,3,0,0,59,280],[247,317,0,0,287,90,0,0,0,0,186,292,0,0,282,151] >;

Q8⋊D21 in GAP, Magma, Sage, TeX

Q_8\rtimes D_{21}
% in TeX

G:=Group("Q8:D21");
// GroupNames label

G:=SmallGroup(336,119);
// by ID

G=gap.SmallGroup(336,119);
# by ID

G:=PCGroup([6,-2,-3,-7,-2,2,-2,49,650,2019,3033,117,1264,1900,202,88]);
// Polycyclic

G:=Group<a,b,c,d|a^4=c^21=d^2=1,b^2=a^2,b*a*b^-1=a^-1,c*a*c^-1=b,d*a*d=a^-1*b,c*b*c^-1=a*b,d*b*d=a^2*b,d*c*d=c^-1>;
// generators/relations

Export

Subgroup lattice of Q8⋊D21 in TeX
Character table of Q8⋊D21 in TeX

׿
×
𝔽