Copied to
clipboard

G = Dic7.2A4order 336 = 24·3·7

The non-split extension by Dic7 of A4 acting through Inn(Dic7)

non-abelian, soluble

Aliases: Dic7.2A4, SL2(𝔽3)⋊2D7, Q8.(C3×D7), C73(C4.A4), C2.2(A4×D7), C14.7(C2×A4), Q82D71C3, (C7×Q8).1C6, (C7×SL2(𝔽3))⋊2C2, SmallGroup(336,131)

Series: Derived Chief Lower central Upper central

C1C2C7×Q8 — Dic7.2A4
C1C2C14C7×Q8C7×SL2(𝔽3) — Dic7.2A4
C7×Q8 — Dic7.2A4
C1C2

Generators and relations for Dic7.2A4
 G = < a,b,c,d,e | a14=e3=1, b2=c2=d2=a7, bab-1=a-1, ac=ca, ad=da, ae=ea, bc=cb, bd=db, be=eb, dcd-1=a7c, ece-1=a7cd, ede-1=c >

42C2
4C3
3C4
7C4
21C22
4C6
6D7
4C21
21D4
21C2×C4
28C12
3D14
3C28
4C42
7C4○D4
3C4×D7
3D28
4C3×Dic7
7C4.A4

Smallest permutation representation of Dic7.2A4
On 112 points
Generators in S112
(1 2 3 4 5 6 7 8 9 10 11 12 13 14)(15 16 17 18 19 20 21 22 23 24 25 26 27 28)(29 30 31 32 33 34 35 36 37 38 39 40 41 42)(43 44 45 46 47 48 49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64 65 66 67 68 69 70)(71 72 73 74 75 76 77 78 79 80 81 82 83 84)(85 86 87 88 89 90 91 92 93 94 95 96 97 98)(99 100 101 102 103 104 105 106 107 108 109 110 111 112)
(1 66 8 59)(2 65 9 58)(3 64 10 57)(4 63 11 70)(5 62 12 69)(6 61 13 68)(7 60 14 67)(15 74 22 81)(16 73 23 80)(17 72 24 79)(18 71 25 78)(19 84 26 77)(20 83 27 76)(21 82 28 75)(29 96 36 89)(30 95 37 88)(31 94 38 87)(32 93 39 86)(33 92 40 85)(34 91 41 98)(35 90 42 97)(43 102 50 109)(44 101 51 108)(45 100 52 107)(46 99 53 106)(47 112 54 105)(48 111 55 104)(49 110 56 103)
(1 26 8 19)(2 27 9 20)(3 28 10 21)(4 15 11 22)(5 16 12 23)(6 17 13 24)(7 18 14 25)(29 55 36 48)(30 56 37 49)(31 43 38 50)(32 44 39 51)(33 45 40 52)(34 46 41 53)(35 47 42 54)(57 82 64 75)(58 83 65 76)(59 84 66 77)(60 71 67 78)(61 72 68 79)(62 73 69 80)(63 74 70 81)(85 107 92 100)(86 108 93 101)(87 109 94 102)(88 110 95 103)(89 111 96 104)(90 112 97 105)(91 99 98 106)
(1 36 8 29)(2 37 9 30)(3 38 10 31)(4 39 11 32)(5 40 12 33)(6 41 13 34)(7 42 14 35)(15 44 22 51)(16 45 23 52)(17 46 24 53)(18 47 25 54)(19 48 26 55)(20 49 27 56)(21 50 28 43)(57 94 64 87)(58 95 65 88)(59 96 66 89)(60 97 67 90)(61 98 68 91)(62 85 69 92)(63 86 70 93)(71 112 78 105)(72 99 79 106)(73 100 80 107)(74 101 81 108)(75 102 82 109)(76 103 83 110)(77 104 84 111)
(15 39 51)(16 40 52)(17 41 53)(18 42 54)(19 29 55)(20 30 56)(21 31 43)(22 32 44)(23 33 45)(24 34 46)(25 35 47)(26 36 48)(27 37 49)(28 38 50)(71 97 105)(72 98 106)(73 85 107)(74 86 108)(75 87 109)(76 88 110)(77 89 111)(78 90 112)(79 91 99)(80 92 100)(81 93 101)(82 94 102)(83 95 103)(84 96 104)

G:=sub<Sym(112)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14)(15,16,17,18,19,20,21,22,23,24,25,26,27,28)(29,30,31,32,33,34,35,36,37,38,39,40,41,42)(43,44,45,46,47,48,49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64,65,66,67,68,69,70)(71,72,73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96,97,98)(99,100,101,102,103,104,105,106,107,108,109,110,111,112), (1,66,8,59)(2,65,9,58)(3,64,10,57)(4,63,11,70)(5,62,12,69)(6,61,13,68)(7,60,14,67)(15,74,22,81)(16,73,23,80)(17,72,24,79)(18,71,25,78)(19,84,26,77)(20,83,27,76)(21,82,28,75)(29,96,36,89)(30,95,37,88)(31,94,38,87)(32,93,39,86)(33,92,40,85)(34,91,41,98)(35,90,42,97)(43,102,50,109)(44,101,51,108)(45,100,52,107)(46,99,53,106)(47,112,54,105)(48,111,55,104)(49,110,56,103), (1,26,8,19)(2,27,9,20)(3,28,10,21)(4,15,11,22)(5,16,12,23)(6,17,13,24)(7,18,14,25)(29,55,36,48)(30,56,37,49)(31,43,38,50)(32,44,39,51)(33,45,40,52)(34,46,41,53)(35,47,42,54)(57,82,64,75)(58,83,65,76)(59,84,66,77)(60,71,67,78)(61,72,68,79)(62,73,69,80)(63,74,70,81)(85,107,92,100)(86,108,93,101)(87,109,94,102)(88,110,95,103)(89,111,96,104)(90,112,97,105)(91,99,98,106), (1,36,8,29)(2,37,9,30)(3,38,10,31)(4,39,11,32)(5,40,12,33)(6,41,13,34)(7,42,14,35)(15,44,22,51)(16,45,23,52)(17,46,24,53)(18,47,25,54)(19,48,26,55)(20,49,27,56)(21,50,28,43)(57,94,64,87)(58,95,65,88)(59,96,66,89)(60,97,67,90)(61,98,68,91)(62,85,69,92)(63,86,70,93)(71,112,78,105)(72,99,79,106)(73,100,80,107)(74,101,81,108)(75,102,82,109)(76,103,83,110)(77,104,84,111), (15,39,51)(16,40,52)(17,41,53)(18,42,54)(19,29,55)(20,30,56)(21,31,43)(22,32,44)(23,33,45)(24,34,46)(25,35,47)(26,36,48)(27,37,49)(28,38,50)(71,97,105)(72,98,106)(73,85,107)(74,86,108)(75,87,109)(76,88,110)(77,89,111)(78,90,112)(79,91,99)(80,92,100)(81,93,101)(82,94,102)(83,95,103)(84,96,104)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14)(15,16,17,18,19,20,21,22,23,24,25,26,27,28)(29,30,31,32,33,34,35,36,37,38,39,40,41,42)(43,44,45,46,47,48,49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64,65,66,67,68,69,70)(71,72,73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96,97,98)(99,100,101,102,103,104,105,106,107,108,109,110,111,112), (1,66,8,59)(2,65,9,58)(3,64,10,57)(4,63,11,70)(5,62,12,69)(6,61,13,68)(7,60,14,67)(15,74,22,81)(16,73,23,80)(17,72,24,79)(18,71,25,78)(19,84,26,77)(20,83,27,76)(21,82,28,75)(29,96,36,89)(30,95,37,88)(31,94,38,87)(32,93,39,86)(33,92,40,85)(34,91,41,98)(35,90,42,97)(43,102,50,109)(44,101,51,108)(45,100,52,107)(46,99,53,106)(47,112,54,105)(48,111,55,104)(49,110,56,103), (1,26,8,19)(2,27,9,20)(3,28,10,21)(4,15,11,22)(5,16,12,23)(6,17,13,24)(7,18,14,25)(29,55,36,48)(30,56,37,49)(31,43,38,50)(32,44,39,51)(33,45,40,52)(34,46,41,53)(35,47,42,54)(57,82,64,75)(58,83,65,76)(59,84,66,77)(60,71,67,78)(61,72,68,79)(62,73,69,80)(63,74,70,81)(85,107,92,100)(86,108,93,101)(87,109,94,102)(88,110,95,103)(89,111,96,104)(90,112,97,105)(91,99,98,106), (1,36,8,29)(2,37,9,30)(3,38,10,31)(4,39,11,32)(5,40,12,33)(6,41,13,34)(7,42,14,35)(15,44,22,51)(16,45,23,52)(17,46,24,53)(18,47,25,54)(19,48,26,55)(20,49,27,56)(21,50,28,43)(57,94,64,87)(58,95,65,88)(59,96,66,89)(60,97,67,90)(61,98,68,91)(62,85,69,92)(63,86,70,93)(71,112,78,105)(72,99,79,106)(73,100,80,107)(74,101,81,108)(75,102,82,109)(76,103,83,110)(77,104,84,111), (15,39,51)(16,40,52)(17,41,53)(18,42,54)(19,29,55)(20,30,56)(21,31,43)(22,32,44)(23,33,45)(24,34,46)(25,35,47)(26,36,48)(27,37,49)(28,38,50)(71,97,105)(72,98,106)(73,85,107)(74,86,108)(75,87,109)(76,88,110)(77,89,111)(78,90,112)(79,91,99)(80,92,100)(81,93,101)(82,94,102)(83,95,103)(84,96,104) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14),(15,16,17,18,19,20,21,22,23,24,25,26,27,28),(29,30,31,32,33,34,35,36,37,38,39,40,41,42),(43,44,45,46,47,48,49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64,65,66,67,68,69,70),(71,72,73,74,75,76,77,78,79,80,81,82,83,84),(85,86,87,88,89,90,91,92,93,94,95,96,97,98),(99,100,101,102,103,104,105,106,107,108,109,110,111,112)], [(1,66,8,59),(2,65,9,58),(3,64,10,57),(4,63,11,70),(5,62,12,69),(6,61,13,68),(7,60,14,67),(15,74,22,81),(16,73,23,80),(17,72,24,79),(18,71,25,78),(19,84,26,77),(20,83,27,76),(21,82,28,75),(29,96,36,89),(30,95,37,88),(31,94,38,87),(32,93,39,86),(33,92,40,85),(34,91,41,98),(35,90,42,97),(43,102,50,109),(44,101,51,108),(45,100,52,107),(46,99,53,106),(47,112,54,105),(48,111,55,104),(49,110,56,103)], [(1,26,8,19),(2,27,9,20),(3,28,10,21),(4,15,11,22),(5,16,12,23),(6,17,13,24),(7,18,14,25),(29,55,36,48),(30,56,37,49),(31,43,38,50),(32,44,39,51),(33,45,40,52),(34,46,41,53),(35,47,42,54),(57,82,64,75),(58,83,65,76),(59,84,66,77),(60,71,67,78),(61,72,68,79),(62,73,69,80),(63,74,70,81),(85,107,92,100),(86,108,93,101),(87,109,94,102),(88,110,95,103),(89,111,96,104),(90,112,97,105),(91,99,98,106)], [(1,36,8,29),(2,37,9,30),(3,38,10,31),(4,39,11,32),(5,40,12,33),(6,41,13,34),(7,42,14,35),(15,44,22,51),(16,45,23,52),(17,46,24,53),(18,47,25,54),(19,48,26,55),(20,49,27,56),(21,50,28,43),(57,94,64,87),(58,95,65,88),(59,96,66,89),(60,97,67,90),(61,98,68,91),(62,85,69,92),(63,86,70,93),(71,112,78,105),(72,99,79,106),(73,100,80,107),(74,101,81,108),(75,102,82,109),(76,103,83,110),(77,104,84,111)], [(15,39,51),(16,40,52),(17,41,53),(18,42,54),(19,29,55),(20,30,56),(21,31,43),(22,32,44),(23,33,45),(24,34,46),(25,35,47),(26,36,48),(27,37,49),(28,38,50),(71,97,105),(72,98,106),(73,85,107),(74,86,108),(75,87,109),(76,88,110),(77,89,111),(78,90,112),(79,91,99),(80,92,100),(81,93,101),(82,94,102),(83,95,103),(84,96,104)]])

35 conjugacy classes

class 1 2A2B3A3B4A4B4C6A6B7A7B7C12A12B12C12D14A14B14C21A···21F28A28B28C42A···42F
order12233444667771212121214141421···2128282842···42
size11424467744222282828282228···81212128···8

35 irreducible representations

dim111122233446
type+++++++
imageC1C2C3C6D7C3×D7C4.A4A4C2×A4Dic7.2A4Dic7.2A4A4×D7
kernelDic7.2A4C7×SL2(𝔽3)Q82D7C7×Q8SL2(𝔽3)Q8C7Dic7C14C1C1C2
# reps112236611363

Matrix representation of Dic7.2A4 in GL4(𝔽337) generated by

336000
033600
0012
00239142
,
189000
018900
00188136
0035149
,
0100
336000
0010
0001
,
20920800
20812800
0010
0001
,
1000
20812800
0010
0001
G:=sub<GL(4,GF(337))| [336,0,0,0,0,336,0,0,0,0,1,239,0,0,2,142],[189,0,0,0,0,189,0,0,0,0,188,35,0,0,136,149],[0,336,0,0,1,0,0,0,0,0,1,0,0,0,0,1],[209,208,0,0,208,128,0,0,0,0,1,0,0,0,0,1],[1,208,0,0,0,128,0,0,0,0,1,0,0,0,0,1] >;

Dic7.2A4 in GAP, Magma, Sage, TeX

{\rm Dic}_7._2A_4
% in TeX

G:=Group("Dic7.2A4");
// GroupNames label

G:=SmallGroup(336,131);
// by ID

G=gap.SmallGroup(336,131);
# by ID

G:=PCGroup([6,-2,-3,-2,2,-7,-2,1008,170,518,81,735,357,4324]);
// Polycyclic

G:=Group<a,b,c,d,e|a^14=e^3=1,b^2=c^2=d^2=a^7,b*a*b^-1=a^-1,a*c=c*a,a*d=d*a,a*e=e*a,b*c=c*b,b*d=d*b,b*e=e*b,d*c*d^-1=a^7*c,e*c*e^-1=a^7*c*d,e*d*e^-1=c>;
// generators/relations

Export

Subgroup lattice of Dic7.2A4 in TeX

׿
×
𝔽