metabelian, supersoluble, monomial, A-group
Aliases: D15⋊S3, C15⋊3D6, C32⋊2D10, C5⋊2S32, C3⋊S3⋊D5, C3⋊3(S3×D5), (C3×D15)⋊3C2, (C3×C15)⋊4C22, (C5×C3⋊S3)⋊2C2, SmallGroup(180,30)
Series: Derived ►Chief ►Lower central ►Upper central
C3×C15 — D15⋊S3 |
Generators and relations for D15⋊S3
G = < a,b,c,d | a15=b2=c3=d2=1, bab=a-1, ac=ca, dad=a11, bc=cb, dbd=a10b, dcd=c-1 >
Character table of D15⋊S3
class | 1 | 2A | 2B | 2C | 3A | 3B | 3C | 5A | 5B | 6A | 6B | 10A | 10B | 15A | 15B | 15C | 15D | 15E | 15F | 15G | 15H | |
size | 1 | 9 | 15 | 15 | 2 | 2 | 4 | 2 | 2 | 30 | 30 | 18 | 18 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | -1 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | linear of order 2 |
ρ3 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | linear of order 2 |
ρ4 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | linear of order 2 |
ρ5 | 2 | 0 | 0 | -2 | 2 | -1 | -1 | 2 | 2 | 0 | 1 | 0 | 0 | -1 | -1 | -1 | -1 | 2 | 2 | -1 | -1 | orthogonal lifted from D6 |
ρ6 | 2 | 0 | 2 | 0 | -1 | 2 | -1 | 2 | 2 | -1 | 0 | 0 | 0 | -1 | 2 | -1 | -1 | -1 | -1 | 2 | -1 | orthogonal lifted from S3 |
ρ7 | 2 | 0 | 0 | 2 | 2 | -1 | -1 | 2 | 2 | 0 | -1 | 0 | 0 | -1 | -1 | -1 | -1 | 2 | 2 | -1 | -1 | orthogonal lifted from S3 |
ρ8 | 2 | 0 | -2 | 0 | -1 | 2 | -1 | 2 | 2 | 1 | 0 | 0 | 0 | -1 | 2 | -1 | -1 | -1 | -1 | 2 | -1 | orthogonal lifted from D6 |
ρ9 | 2 | 2 | 0 | 0 | 2 | 2 | 2 | -1-√5/2 | -1+√5/2 | 0 | 0 | -1-√5/2 | -1+√5/2 | -1-√5/2 | -1+√5/2 | -1-√5/2 | -1+√5/2 | -1+√5/2 | -1-√5/2 | -1-√5/2 | -1+√5/2 | orthogonal lifted from D5 |
ρ10 | 2 | -2 | 0 | 0 | 2 | 2 | 2 | -1+√5/2 | -1-√5/2 | 0 | 0 | 1-√5/2 | 1+√5/2 | -1+√5/2 | -1-√5/2 | -1+√5/2 | -1-√5/2 | -1-√5/2 | -1+√5/2 | -1+√5/2 | -1-√5/2 | orthogonal lifted from D10 |
ρ11 | 2 | -2 | 0 | 0 | 2 | 2 | 2 | -1-√5/2 | -1+√5/2 | 0 | 0 | 1+√5/2 | 1-√5/2 | -1-√5/2 | -1+√5/2 | -1-√5/2 | -1+√5/2 | -1+√5/2 | -1-√5/2 | -1-√5/2 | -1+√5/2 | orthogonal lifted from D10 |
ρ12 | 2 | 2 | 0 | 0 | 2 | 2 | 2 | -1+√5/2 | -1-√5/2 | 0 | 0 | -1+√5/2 | -1-√5/2 | -1+√5/2 | -1-√5/2 | -1+√5/2 | -1-√5/2 | -1-√5/2 | -1+√5/2 | -1+√5/2 | -1-√5/2 | orthogonal lifted from D5 |
ρ13 | 4 | 0 | 0 | 0 | -2 | -2 | 1 | 4 | 4 | 0 | 0 | 0 | 0 | 1 | -2 | 1 | 1 | -2 | -2 | -2 | 1 | orthogonal lifted from S32 |
ρ14 | 4 | 0 | 0 | 0 | -2 | 4 | -2 | -1-√5 | -1+√5 | 0 | 0 | 0 | 0 | 1+√5/2 | -1+√5 | 1+√5/2 | 1-√5/2 | 1-√5/2 | 1+√5/2 | -1-√5 | 1-√5/2 | orthogonal lifted from S3×D5 |
ρ15 | 4 | 0 | 0 | 0 | 4 | -2 | -2 | -1+√5 | -1-√5 | 0 | 0 | 0 | 0 | 1-√5/2 | 1+√5/2 | 1-√5/2 | 1+√5/2 | -1-√5 | -1+√5 | 1-√5/2 | 1+√5/2 | orthogonal lifted from S3×D5 |
ρ16 | 4 | 0 | 0 | 0 | 4 | -2 | -2 | -1-√5 | -1+√5 | 0 | 0 | 0 | 0 | 1+√5/2 | 1-√5/2 | 1+√5/2 | 1-√5/2 | -1+√5 | -1-√5 | 1+√5/2 | 1-√5/2 | orthogonal lifted from S3×D5 |
ρ17 | 4 | 0 | 0 | 0 | -2 | 4 | -2 | -1+√5 | -1-√5 | 0 | 0 | 0 | 0 | 1-√5/2 | -1-√5 | 1-√5/2 | 1+√5/2 | 1+√5/2 | 1-√5/2 | -1+√5 | 1+√5/2 | orthogonal lifted from S3×D5 |
ρ18 | 4 | 0 | 0 | 0 | -2 | -2 | 1 | -1+√5 | -1-√5 | 0 | 0 | 0 | 0 | 2ζ54-ζ5 | 1+√5/2 | -ζ54+2ζ5 | 2ζ53-ζ52 | 1+√5/2 | 1-√5/2 | 1-√5/2 | -ζ53+2ζ52 | complex faithful |
ρ19 | 4 | 0 | 0 | 0 | -2 | -2 | 1 | -1-√5 | -1+√5 | 0 | 0 | 0 | 0 | 2ζ53-ζ52 | 1-√5/2 | -ζ53+2ζ52 | -ζ54+2ζ5 | 1-√5/2 | 1+√5/2 | 1+√5/2 | 2ζ54-ζ5 | complex faithful |
ρ20 | 4 | 0 | 0 | 0 | -2 | -2 | 1 | -1+√5 | -1-√5 | 0 | 0 | 0 | 0 | -ζ54+2ζ5 | 1+√5/2 | 2ζ54-ζ5 | -ζ53+2ζ52 | 1+√5/2 | 1-√5/2 | 1-√5/2 | 2ζ53-ζ52 | complex faithful |
ρ21 | 4 | 0 | 0 | 0 | -2 | -2 | 1 | -1-√5 | -1+√5 | 0 | 0 | 0 | 0 | -ζ53+2ζ52 | 1-√5/2 | 2ζ53-ζ52 | 2ζ54-ζ5 | 1-√5/2 | 1+√5/2 | 1+√5/2 | -ζ54+2ζ5 | complex faithful |
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15)(16 17 18 19 20 21 22 23 24 25 26 27 28 29 30)
(1 30)(2 29)(3 28)(4 27)(5 26)(6 25)(7 24)(8 23)(9 22)(10 21)(11 20)(12 19)(13 18)(14 17)(15 16)
(1 11 6)(2 12 7)(3 13 8)(4 14 9)(5 15 10)(16 21 26)(17 22 27)(18 23 28)(19 24 29)(20 25 30)
(2 12)(3 8)(5 15)(6 11)(9 14)(17 27)(18 23)(20 30)(21 26)(24 29)
G:=sub<Sym(30)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15)(16,17,18,19,20,21,22,23,24,25,26,27,28,29,30), (1,30)(2,29)(3,28)(4,27)(5,26)(6,25)(7,24)(8,23)(9,22)(10,21)(11,20)(12,19)(13,18)(14,17)(15,16), (1,11,6)(2,12,7)(3,13,8)(4,14,9)(5,15,10)(16,21,26)(17,22,27)(18,23,28)(19,24,29)(20,25,30), (2,12)(3,8)(5,15)(6,11)(9,14)(17,27)(18,23)(20,30)(21,26)(24,29)>;
G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15)(16,17,18,19,20,21,22,23,24,25,26,27,28,29,30), (1,30)(2,29)(3,28)(4,27)(5,26)(6,25)(7,24)(8,23)(9,22)(10,21)(11,20)(12,19)(13,18)(14,17)(15,16), (1,11,6)(2,12,7)(3,13,8)(4,14,9)(5,15,10)(16,21,26)(17,22,27)(18,23,28)(19,24,29)(20,25,30), (2,12)(3,8)(5,15)(6,11)(9,14)(17,27)(18,23)(20,30)(21,26)(24,29) );
G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15),(16,17,18,19,20,21,22,23,24,25,26,27,28,29,30)], [(1,30),(2,29),(3,28),(4,27),(5,26),(6,25),(7,24),(8,23),(9,22),(10,21),(11,20),(12,19),(13,18),(14,17),(15,16)], [(1,11,6),(2,12,7),(3,13,8),(4,14,9),(5,15,10),(16,21,26),(17,22,27),(18,23,28),(19,24,29),(20,25,30)], [(2,12),(3,8),(5,15),(6,11),(9,14),(17,27),(18,23),(20,30),(21,26),(24,29)]])
G:=TransitiveGroup(30,43);
D15⋊S3 is a maximal subgroup of
S32⋊D5 C32⋊D20 S32×D5
D15⋊S3 is a maximal quotient of D30.S3 Dic15⋊S3 D30⋊S3 C32⋊3D20 C32⋊3Dic10
Matrix representation of D15⋊S3 ►in GL6(𝔽31)
12 | 12 | 0 | 0 | 0 | 0 |
24 | 6 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 30 | 0 | 0 |
0 | 0 | 1 | 30 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
6 | 19 | 0 | 0 | 0 | 0 |
21 | 25 | 0 | 0 | 0 | 0 |
0 | 0 | 30 | 1 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
0 | 0 | 0 | 0 | 30 | 30 |
30 | 0 | 0 | 0 | 0 | 0 |
0 | 30 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 30 | 30 |
G:=sub<GL(6,GF(31))| [12,24,0,0,0,0,12,6,0,0,0,0,0,0,0,1,0,0,0,0,30,30,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[6,21,0,0,0,0,19,25,0,0,0,0,0,0,30,0,0,0,0,0,1,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,30,0,0,0,0,1,30],[30,0,0,0,0,0,0,30,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,1,30,0,0,0,0,0,30] >;
D15⋊S3 in GAP, Magma, Sage, TeX
D_{15}\rtimes S_3
% in TeX
G:=Group("D15:S3");
// GroupNames label
G:=SmallGroup(180,30);
// by ID
G=gap.SmallGroup(180,30);
# by ID
G:=PCGroup([5,-2,-2,-3,-3,-5,122,67,248,3604]);
// Polycyclic
G:=Group<a,b,c,d|a^15=b^2=c^3=d^2=1,b*a*b=a^-1,a*c=c*a,d*a*d=a^11,b*c=c*b,d*b*d=a^10*b,d*c*d=c^-1>;
// generators/relations
Export
Subgroup lattice of D15⋊S3 in TeX
Character table of D15⋊S3 in TeX