Extensions 1→N→G→Q→1 with N=C3×Dic7 and Q=C2

Direct product G=N×Q with N=C3×Dic7 and Q=C2
dρLabelID
C6×Dic7168C6xDic7168,27

Semidirect products G=N:Q with N=C3×Dic7 and Q=C2
extensionφ:Q→Out NdρLabelID
(C3×Dic7)⋊1C2 = S3×Dic7φ: C2/C1C2 ⊆ Out C3×Dic7844-(C3xDic7):1C2168,13
(C3×Dic7)⋊2C2 = D21⋊C4φ: C2/C1C2 ⊆ Out C3×Dic7844+(C3xDic7):2C2168,14
(C3×Dic7)⋊3C2 = C7⋊D12φ: C2/C1C2 ⊆ Out C3×Dic7844+(C3xDic7):3C2168,17
(C3×Dic7)⋊4C2 = C3×C7⋊D4φ: C2/C1C2 ⊆ Out C3×Dic7842(C3xDic7):4C2168,28
(C3×Dic7)⋊5C2 = C12×D7φ: trivial image842(C3xDic7):5C2168,25

Non-split extensions G=N.Q with N=C3×Dic7 and Q=C2
extensionφ:Q→Out NdρLabelID
(C3×Dic7).1C2 = C21⋊Q8φ: C2/C1C2 ⊆ Out C3×Dic71684-(C3xDic7).1C2168,18
(C3×Dic7).2C2 = C3×Dic14φ: C2/C1C2 ⊆ Out C3×Dic71682(C3xDic7).2C2168,24

׿
×
𝔽