Copied to
clipboard

G = C3xC7:D4order 168 = 23·3·7

Direct product of C3 and C7:D4

direct product, metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C3xC7:D4, C21:8D4, D14:5C6, Dic7:4C6, C6.17D14, C42.17C22, C7:5(C3xD4), (C2xC6):1D7, (C2xC42):4C2, (C6xD7):5C2, C2.5(C6xD7), (C2xC14):10C6, C22:2(C3xD7), C14.13(C2xC6), (C3xDic7):4C2, SmallGroup(168,28)

Series: Derived Chief Lower central Upper central

C1C14 — C3xC7:D4
C1C7C14C42C6xD7 — C3xC7:D4
C7C14 — C3xC7:D4
C1C6C2xC6

Generators and relations for C3xC7:D4
 G = < a,b,c,d | a3=b7=c4=d2=1, ab=ba, ac=ca, ad=da, cbc-1=dbd=b-1, dcd=c-1 >

Subgroups: 100 in 32 conjugacy classes, 18 normal (all characteristic)
Quotients: C1, C2, C3, C22, C6, D4, C2xC6, D7, C3xD4, D14, C3xD7, C7:D4, C6xD7, C3xC7:D4
2C2
14C2
7C22
7C4
2C6
14C6
2D7
2C14
7D4
7C2xC6
7C12
2C42
2C3xD7
7C3xD4

Smallest permutation representation of C3xC7:D4
On 84 points
Generators in S84
(1 29 15)(2 30 16)(3 31 17)(4 32 18)(5 33 19)(6 34 20)(7 35 21)(8 36 22)(9 37 23)(10 38 24)(11 39 25)(12 40 26)(13 41 27)(14 42 28)(43 71 57)(44 72 58)(45 73 59)(46 74 60)(47 75 61)(48 76 62)(49 77 63)(50 78 64)(51 79 65)(52 80 66)(53 81 67)(54 82 68)(55 83 69)(56 84 70)
(1 2 3 4 5 6 7)(8 9 10 11 12 13 14)(15 16 17 18 19 20 21)(22 23 24 25 26 27 28)(29 30 31 32 33 34 35)(36 37 38 39 40 41 42)(43 44 45 46 47 48 49)(50 51 52 53 54 55 56)(57 58 59 60 61 62 63)(64 65 66 67 68 69 70)(71 72 73 74 75 76 77)(78 79 80 81 82 83 84)
(1 43 8 50)(2 49 9 56)(3 48 10 55)(4 47 11 54)(5 46 12 53)(6 45 13 52)(7 44 14 51)(15 57 22 64)(16 63 23 70)(17 62 24 69)(18 61 25 68)(19 60 26 67)(20 59 27 66)(21 58 28 65)(29 71 36 78)(30 77 37 84)(31 76 38 83)(32 75 39 82)(33 74 40 81)(34 73 41 80)(35 72 42 79)
(2 7)(3 6)(4 5)(9 14)(10 13)(11 12)(16 21)(17 20)(18 19)(23 28)(24 27)(25 26)(30 35)(31 34)(32 33)(37 42)(38 41)(39 40)(43 50)(44 56)(45 55)(46 54)(47 53)(48 52)(49 51)(57 64)(58 70)(59 69)(60 68)(61 67)(62 66)(63 65)(71 78)(72 84)(73 83)(74 82)(75 81)(76 80)(77 79)

G:=sub<Sym(84)| (1,29,15)(2,30,16)(3,31,17)(4,32,18)(5,33,19)(6,34,20)(7,35,21)(8,36,22)(9,37,23)(10,38,24)(11,39,25)(12,40,26)(13,41,27)(14,42,28)(43,71,57)(44,72,58)(45,73,59)(46,74,60)(47,75,61)(48,76,62)(49,77,63)(50,78,64)(51,79,65)(52,80,66)(53,81,67)(54,82,68)(55,83,69)(56,84,70), (1,2,3,4,5,6,7)(8,9,10,11,12,13,14)(15,16,17,18,19,20,21)(22,23,24,25,26,27,28)(29,30,31,32,33,34,35)(36,37,38,39,40,41,42)(43,44,45,46,47,48,49)(50,51,52,53,54,55,56)(57,58,59,60,61,62,63)(64,65,66,67,68,69,70)(71,72,73,74,75,76,77)(78,79,80,81,82,83,84), (1,43,8,50)(2,49,9,56)(3,48,10,55)(4,47,11,54)(5,46,12,53)(6,45,13,52)(7,44,14,51)(15,57,22,64)(16,63,23,70)(17,62,24,69)(18,61,25,68)(19,60,26,67)(20,59,27,66)(21,58,28,65)(29,71,36,78)(30,77,37,84)(31,76,38,83)(32,75,39,82)(33,74,40,81)(34,73,41,80)(35,72,42,79), (2,7)(3,6)(4,5)(9,14)(10,13)(11,12)(16,21)(17,20)(18,19)(23,28)(24,27)(25,26)(30,35)(31,34)(32,33)(37,42)(38,41)(39,40)(43,50)(44,56)(45,55)(46,54)(47,53)(48,52)(49,51)(57,64)(58,70)(59,69)(60,68)(61,67)(62,66)(63,65)(71,78)(72,84)(73,83)(74,82)(75,81)(76,80)(77,79)>;

G:=Group( (1,29,15)(2,30,16)(3,31,17)(4,32,18)(5,33,19)(6,34,20)(7,35,21)(8,36,22)(9,37,23)(10,38,24)(11,39,25)(12,40,26)(13,41,27)(14,42,28)(43,71,57)(44,72,58)(45,73,59)(46,74,60)(47,75,61)(48,76,62)(49,77,63)(50,78,64)(51,79,65)(52,80,66)(53,81,67)(54,82,68)(55,83,69)(56,84,70), (1,2,3,4,5,6,7)(8,9,10,11,12,13,14)(15,16,17,18,19,20,21)(22,23,24,25,26,27,28)(29,30,31,32,33,34,35)(36,37,38,39,40,41,42)(43,44,45,46,47,48,49)(50,51,52,53,54,55,56)(57,58,59,60,61,62,63)(64,65,66,67,68,69,70)(71,72,73,74,75,76,77)(78,79,80,81,82,83,84), (1,43,8,50)(2,49,9,56)(3,48,10,55)(4,47,11,54)(5,46,12,53)(6,45,13,52)(7,44,14,51)(15,57,22,64)(16,63,23,70)(17,62,24,69)(18,61,25,68)(19,60,26,67)(20,59,27,66)(21,58,28,65)(29,71,36,78)(30,77,37,84)(31,76,38,83)(32,75,39,82)(33,74,40,81)(34,73,41,80)(35,72,42,79), (2,7)(3,6)(4,5)(9,14)(10,13)(11,12)(16,21)(17,20)(18,19)(23,28)(24,27)(25,26)(30,35)(31,34)(32,33)(37,42)(38,41)(39,40)(43,50)(44,56)(45,55)(46,54)(47,53)(48,52)(49,51)(57,64)(58,70)(59,69)(60,68)(61,67)(62,66)(63,65)(71,78)(72,84)(73,83)(74,82)(75,81)(76,80)(77,79) );

G=PermutationGroup([[(1,29,15),(2,30,16),(3,31,17),(4,32,18),(5,33,19),(6,34,20),(7,35,21),(8,36,22),(9,37,23),(10,38,24),(11,39,25),(12,40,26),(13,41,27),(14,42,28),(43,71,57),(44,72,58),(45,73,59),(46,74,60),(47,75,61),(48,76,62),(49,77,63),(50,78,64),(51,79,65),(52,80,66),(53,81,67),(54,82,68),(55,83,69),(56,84,70)], [(1,2,3,4,5,6,7),(8,9,10,11,12,13,14),(15,16,17,18,19,20,21),(22,23,24,25,26,27,28),(29,30,31,32,33,34,35),(36,37,38,39,40,41,42),(43,44,45,46,47,48,49),(50,51,52,53,54,55,56),(57,58,59,60,61,62,63),(64,65,66,67,68,69,70),(71,72,73,74,75,76,77),(78,79,80,81,82,83,84)], [(1,43,8,50),(2,49,9,56),(3,48,10,55),(4,47,11,54),(5,46,12,53),(6,45,13,52),(7,44,14,51),(15,57,22,64),(16,63,23,70),(17,62,24,69),(18,61,25,68),(19,60,26,67),(20,59,27,66),(21,58,28,65),(29,71,36,78),(30,77,37,84),(31,76,38,83),(32,75,39,82),(33,74,40,81),(34,73,41,80),(35,72,42,79)], [(2,7),(3,6),(4,5),(9,14),(10,13),(11,12),(16,21),(17,20),(18,19),(23,28),(24,27),(25,26),(30,35),(31,34),(32,33),(37,42),(38,41),(39,40),(43,50),(44,56),(45,55),(46,54),(47,53),(48,52),(49,51),(57,64),(58,70),(59,69),(60,68),(61,67),(62,66),(63,65),(71,78),(72,84),(73,83),(74,82),(75,81),(76,80),(77,79)]])

C3xC7:D4 is a maximal subgroup of   Dic7.D6  C42.C23  D6:D14  C3xD4xD7

51 conjugacy classes

class 1 2A2B2C3A3B 4 6A6B6C6D6E6F7A7B7C12A12B14A···14I21A···21F42A···42R
order1222334666666777121214···1421···2142···42
size1121411141122141422214142···22···22···2

51 irreducible representations

dim1111111122222222
type+++++++
imageC1C2C2C2C3C6C6C6D4D7C3xD4D14C3xD7C7:D4C6xD7C3xC7:D4
kernelC3xC7:D4C3xDic7C6xD7C2xC42C7:D4Dic7D14C2xC14C21C2xC6C7C6C22C3C2C1
# reps11112222132366612

Matrix representation of C3xC7:D4 in GL2(F43) generated by

360
036
,
1810
1640
,
07
60
,
1121
2532
G:=sub<GL(2,GF(43))| [36,0,0,36],[18,16,10,40],[0,6,7,0],[11,25,21,32] >;

C3xC7:D4 in GAP, Magma, Sage, TeX

C_3\times C_7\rtimes D_4
% in TeX

G:=Group("C3xC7:D4");
// GroupNames label

G:=SmallGroup(168,28);
// by ID

G=gap.SmallGroup(168,28);
# by ID

G:=PCGroup([5,-2,-2,-3,-2,-7,141,3604]);
// Polycyclic

G:=Group<a,b,c,d|a^3=b^7=c^4=d^2=1,a*b=b*a,a*c=c*a,a*d=d*a,c*b*c^-1=d*b*d=b^-1,d*c*d=c^-1>;
// generators/relations

Export

Subgroup lattice of C3xC7:D4 in TeX

׿
x
:
Z
F
o
wr
Q
<