Extensions 1→N→G→Q→1 with N=C84 and Q=C2

Direct product G=N×Q with N=C84 and Q=C2
dρLabelID
C2×C84168C2xC84168,39

Semidirect products G=N:Q with N=C84 and Q=C2
extensionφ:Q→Aut NdρLabelID
C841C2 = D84φ: C2/C1C2 ⊆ Aut C84842+C84:1C2168,36
C842C2 = C4×D21φ: C2/C1C2 ⊆ Aut C84842C84:2C2168,35
C843C2 = C3×D28φ: C2/C1C2 ⊆ Aut C84842C84:3C2168,26
C844C2 = C12×D7φ: C2/C1C2 ⊆ Aut C84842C84:4C2168,25
C845C2 = C7×D12φ: C2/C1C2 ⊆ Aut C84842C84:5C2168,31
C846C2 = S3×C28φ: C2/C1C2 ⊆ Aut C84842C84:6C2168,30
C847C2 = D4×C21φ: C2/C1C2 ⊆ Aut C84842C84:7C2168,40

Non-split extensions G=N.Q with N=C84 and Q=C2
extensionφ:Q→Aut NdρLabelID
C84.1C2 = Dic42φ: C2/C1C2 ⊆ Aut C841682-C84.1C2168,34
C84.2C2 = C21⋊C8φ: C2/C1C2 ⊆ Aut C841682C84.2C2168,5
C84.3C2 = C3×Dic14φ: C2/C1C2 ⊆ Aut C841682C84.3C2168,24
C84.4C2 = C3×C7⋊C8φ: C2/C1C2 ⊆ Aut C841682C84.4C2168,4
C84.5C2 = C7×Dic6φ: C2/C1C2 ⊆ Aut C841682C84.5C2168,29
C84.6C2 = C7×C3⋊C8φ: C2/C1C2 ⊆ Aut C841682C84.6C2168,3
C84.7C2 = Q8×C21φ: C2/C1C2 ⊆ Aut C841682C84.7C2168,41

׿
×
𝔽