Copied to
clipboard

G = C21⋊C8order 168 = 23·3·7

1st semidirect product of C21 and C8 acting via C8/C4=C2

metacyclic, supersoluble, monomial, Z-group, 2-hyperelementary

Aliases: C211C8, C6.Dic7, C84.2C2, C42.1C4, C28.2S3, C4.2D21, C12.2D7, C2.Dic21, C14.Dic3, C3⋊(C7⋊C8), C7⋊(C3⋊C8), SmallGroup(168,5)

Series: Derived Chief Lower central Upper central

C1C21 — C21⋊C8
C1C7C21C42C84 — C21⋊C8
C21 — C21⋊C8
C1C4

Generators and relations for C21⋊C8
 G = < a,b | a21=b8=1, bab-1=a-1 >

21C8
7C3⋊C8
3C7⋊C8

Smallest permutation representation of C21⋊C8
Regular action on 168 points
Generators in S168
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21)(22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42)(43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63)(64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84)(85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105)(106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126)(127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147)(148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168)
(1 167 70 106 29 127 53 100)(2 166 71 126 30 147 54 99)(3 165 72 125 31 146 55 98)(4 164 73 124 32 145 56 97)(5 163 74 123 33 144 57 96)(6 162 75 122 34 143 58 95)(7 161 76 121 35 142 59 94)(8 160 77 120 36 141 60 93)(9 159 78 119 37 140 61 92)(10 158 79 118 38 139 62 91)(11 157 80 117 39 138 63 90)(12 156 81 116 40 137 43 89)(13 155 82 115 41 136 44 88)(14 154 83 114 42 135 45 87)(15 153 84 113 22 134 46 86)(16 152 64 112 23 133 47 85)(17 151 65 111 24 132 48 105)(18 150 66 110 25 131 49 104)(19 149 67 109 26 130 50 103)(20 148 68 108 27 129 51 102)(21 168 69 107 28 128 52 101)

G:=sub<Sym(168)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21)(22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42)(43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63)(64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105)(106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126)(127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147)(148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168), (1,167,70,106,29,127,53,100)(2,166,71,126,30,147,54,99)(3,165,72,125,31,146,55,98)(4,164,73,124,32,145,56,97)(5,163,74,123,33,144,57,96)(6,162,75,122,34,143,58,95)(7,161,76,121,35,142,59,94)(8,160,77,120,36,141,60,93)(9,159,78,119,37,140,61,92)(10,158,79,118,38,139,62,91)(11,157,80,117,39,138,63,90)(12,156,81,116,40,137,43,89)(13,155,82,115,41,136,44,88)(14,154,83,114,42,135,45,87)(15,153,84,113,22,134,46,86)(16,152,64,112,23,133,47,85)(17,151,65,111,24,132,48,105)(18,150,66,110,25,131,49,104)(19,149,67,109,26,130,50,103)(20,148,68,108,27,129,51,102)(21,168,69,107,28,128,52,101)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21)(22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42)(43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63)(64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105)(106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126)(127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147)(148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168), (1,167,70,106,29,127,53,100)(2,166,71,126,30,147,54,99)(3,165,72,125,31,146,55,98)(4,164,73,124,32,145,56,97)(5,163,74,123,33,144,57,96)(6,162,75,122,34,143,58,95)(7,161,76,121,35,142,59,94)(8,160,77,120,36,141,60,93)(9,159,78,119,37,140,61,92)(10,158,79,118,38,139,62,91)(11,157,80,117,39,138,63,90)(12,156,81,116,40,137,43,89)(13,155,82,115,41,136,44,88)(14,154,83,114,42,135,45,87)(15,153,84,113,22,134,46,86)(16,152,64,112,23,133,47,85)(17,151,65,111,24,132,48,105)(18,150,66,110,25,131,49,104)(19,149,67,109,26,130,50,103)(20,148,68,108,27,129,51,102)(21,168,69,107,28,128,52,101) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21),(22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42),(43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63),(64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84),(85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105),(106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126),(127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147),(148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168)], [(1,167,70,106,29,127,53,100),(2,166,71,126,30,147,54,99),(3,165,72,125,31,146,55,98),(4,164,73,124,32,145,56,97),(5,163,74,123,33,144,57,96),(6,162,75,122,34,143,58,95),(7,161,76,121,35,142,59,94),(8,160,77,120,36,141,60,93),(9,159,78,119,37,140,61,92),(10,158,79,118,38,139,62,91),(11,157,80,117,39,138,63,90),(12,156,81,116,40,137,43,89),(13,155,82,115,41,136,44,88),(14,154,83,114,42,135,45,87),(15,153,84,113,22,134,46,86),(16,152,64,112,23,133,47,85),(17,151,65,111,24,132,48,105),(18,150,66,110,25,131,49,104),(19,149,67,109,26,130,50,103),(20,148,68,108,27,129,51,102),(21,168,69,107,28,128,52,101)]])

C21⋊C8 is a maximal subgroup of
D7×C3⋊C8  S3×C7⋊C8  C28.32D6  D6.Dic7  C21⋊D8  C28.D6  C42.D4  C21⋊Q16  C8×D21  C56⋊S3  C84.C4  D4⋊D21  D4.D21  Q82D21  C217Q16
C21⋊C8 is a maximal quotient of
C21⋊C16

48 conjugacy classes

class 1  2  3 4A4B 6 7A7B7C8A8B8C8D12A12B14A14B14C21A···21F28A···28F42A···42F84A···84L
order1234467778888121214141421···2128···2842···4284···84
size11211222221212121222222···22···22···22···2

48 irreducible representations

dim1111222222222
type+++-+-+-
imageC1C2C4C8S3Dic3D7C3⋊C8Dic7D21C7⋊C8Dic21C21⋊C8
kernelC21⋊C8C84C42C21C28C14C12C7C6C4C3C2C1
# reps11241132366612

Matrix representation of C21⋊C8 in GL2(𝔽41) generated by

4020
2130
,
2734
014
G:=sub<GL(2,GF(41))| [40,21,20,30],[27,0,34,14] >;

C21⋊C8 in GAP, Magma, Sage, TeX

C_{21}\rtimes C_8
% in TeX

G:=Group("C21:C8");
// GroupNames label

G:=SmallGroup(168,5);
// by ID

G=gap.SmallGroup(168,5);
# by ID

G:=PCGroup([5,-2,-2,-2,-3,-7,10,26,323,3604]);
// Polycyclic

G:=Group<a,b|a^21=b^8=1,b*a*b^-1=a^-1>;
// generators/relations

Export

Subgroup lattice of C21⋊C8 in TeX

׿
×
𝔽