Copied to
clipboard

G = (C2×C8).D6order 192 = 26·3

173rd non-split extension by C2×C8 of D6 acting via D6/C3=C22

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C12⋊Q85C2, C4⋊C4.18D6, C24⋊C419C2, (C2×C8).173D6, (C2×Q8).34D6, Q8⋊C415S3, Q82Dic31C2, C6.D8.1C2, C4.29(C4○D12), C12.14(C4○D4), C2.15(Q83D6), C6.60(C8⋊C22), (C2×Dic3).26D4, C2.D24.10C2, C2.9(Q16⋊S3), C22.188(S3×D4), (C6×Q8).17C22, C4.55(D42S3), (C2×C12).234C23, (C2×C24).236C22, C12.23D4.2C2, C6.27(C4.4D4), (C2×D12).57C22, C6.54(C8.C22), C4⋊Dic3.84C22, (C4×Dic3).18C22, C33(C42.28C22), C2.17(C23.11D6), (C2×C6).247(C2×D4), (C2×C3⋊C8).29C22, (C3×Q8⋊C4)⋊20C2, (C3×C4⋊C4).35C22, (C2×C4).341(C22×S3), SmallGroup(192,353)

Series: Derived Chief Lower central Upper central

C1C2×C12 — (C2×C8).D6
C1C3C6C12C2×C12C4×Dic3C12⋊Q8 — (C2×C8).D6
C3C6C2×C12 — (C2×C8).D6
C1C22C2×C4Q8⋊C4

Generators and relations for (C2×C8).D6
 G = < a,b,c,d | a2=b8=1, c6=d2=a, ab=ba, ac=ca, ad=da, cbc-1=ab3, dbd-1=ab-1, dcd-1=ac5 >

Subgroups: 328 in 100 conjugacy classes, 37 normal (all characteristic)
C1, C2, C2, C3, C4, C4, C22, C22, S3, C6, C8, C2×C4, C2×C4, D4, Q8, C23, Dic3, C12, C12, D6, C2×C6, C42, C22⋊C4, C4⋊C4, C4⋊C4, C2×C8, C2×C8, C2×D4, C2×Q8, C2×Q8, C3⋊C8, C24, Dic6, D12, C2×Dic3, C2×Dic3, C2×C12, C2×C12, C3×Q8, C22×S3, C8⋊C4, D4⋊C4, Q8⋊C4, Q8⋊C4, C4.4D4, C4⋊Q8, C2×C3⋊C8, C4×Dic3, Dic3⋊C4, C4⋊Dic3, D6⋊C4, C3×C4⋊C4, C2×C24, C2×Dic6, C2×D12, C6×Q8, C42.28C22, C6.D8, C24⋊C4, C2.D24, Q82Dic3, C3×Q8⋊C4, C12⋊Q8, C12.23D4, (C2×C8).D6
Quotients: C1, C2, C22, S3, D4, C23, D6, C2×D4, C4○D4, C22×S3, C4.4D4, C8⋊C22, C8.C22, C4○D12, S3×D4, D42S3, C42.28C22, C23.11D6, Q83D6, Q16⋊S3, (C2×C8).D6

Character table of (C2×C8).D6

 class 12A2B2C2D34A4B4C4D4E4F4G6A6B6C8A8B8C8D12A12B12C12D12E12F24A24B24C24D
 size 111124222881212242224412124488884444
ρ1111111111111111111111111111111    trivial
ρ21111-11111-1111111-1-1-1-111-11-11-1-1-1-1    linear of order 2
ρ31111-111111-1-1-111111-1-11111111111    linear of order 2
ρ4111111111-1-1-1-1111-1-11111-11-11-1-1-1-1    linear of order 2
ρ511111111-1111-1111-1-1-1-1111-11-1-1-1-1-1    linear of order 2
ρ61111-1111-1-111-1111111111-1-1-1-11111    linear of order 2
ρ71111-1111-11-1-11111-1-111111-11-1-1-1-1-1    linear of order 2
ρ811111111-1-1-1-1111111-1-111-1-1-1-11111    linear of order 2
ρ922220-12222000-1-1-12200-1-1-1-1-1-1-1-1-1-1    orthogonal lifted from S3
ρ1022220-1222-2000-1-1-1-2-200-1-11-11-11111    orthogonal lifted from D6
ρ11222202-2-200-2202220000-2-200000000    orthogonal lifted from D4
ρ1222220-122-2-2000-1-1-12200-1-11111-1-1-1-1    orthogonal lifted from D6
ρ13222202-2-2002-202220000-2-200000000    orthogonal lifted from D4
ρ1422220-122-22000-1-1-1-2-200-1-1-11-111111    orthogonal lifted from D6
ρ152-2-22022-2000002-2-2002i-2i-2200000000    complex lifted from C4○D4
ρ162-2-2202-22000002-2-22i-2i002-20000-2i2i2i-2i    complex lifted from C4○D4
ρ172-2-22022-2000002-2-200-2i2i-2200000000    complex lifted from C4○D4
ρ182-2-2202-22000002-2-2-2i2i002-200002i-2i-2i2i    complex lifted from C4○D4
ρ192-2-220-1-2200000-1112i-2i00-11--3-3-33i-i-ii    complex lifted from C4○D12
ρ202-2-220-1-2200000-111-2i2i00-11-3-3--33-iii-i    complex lifted from C4○D12
ρ212-2-220-1-2200000-1112i-2i00-11-33--3-3i-i-ii    complex lifted from C4○D12
ρ222-2-220-1-2200000-111-2i2i00-11--33-3-3-iii-i    complex lifted from C4○D12
ρ234-44-40-200000002-22000000000066-6-6    orthogonal lifted from Q83D6
ρ2444440-2-4-400000-2-2-200002200000000    orthogonal lifted from S3×D4
ρ254-44-4040000000-44-400000000000000    orthogonal lifted from C8⋊C22
ρ264-44-40-200000002-220000000000-6-666    orthogonal lifted from Q83D6
ρ2744-4-4040000000-4-4400000000000000    symplectic lifted from C8.C22, Schur index 2
ρ284-4-440-24-400000-22200002-200000000    symplectic lifted from D42S3, Schur index 2
ρ2944-4-40-2000000022-20000000000--6-6--6-6    complex lifted from Q16⋊S3
ρ3044-4-40-2000000022-20000000000-6--6-6--6    complex lifted from Q16⋊S3

Smallest permutation representation of (C2×C8).D6
On 96 points
Generators in S96
(1 7)(2 8)(3 9)(4 10)(5 11)(6 12)(13 19)(14 20)(15 21)(16 22)(17 23)(18 24)(25 31)(26 32)(27 33)(28 34)(29 35)(30 36)(37 43)(38 44)(39 45)(40 46)(41 47)(42 48)(49 55)(50 56)(51 57)(52 58)(53 59)(54 60)(61 67)(62 68)(63 69)(64 70)(65 71)(66 72)(73 79)(74 80)(75 81)(76 82)(77 83)(78 84)(85 91)(86 92)(87 93)(88 94)(89 95)(90 96)
(1 94 17 64 28 59 81 48)(2 71 82 89 29 43 18 54)(3 96 19 66 30 49 83 38)(4 61 84 91 31 45 20 56)(5 86 21 68 32 51 73 40)(6 63 74 93 33 47 22 58)(7 88 23 70 34 53 75 42)(8 65 76 95 35 37 24 60)(9 90 13 72 36 55 77 44)(10 67 78 85 25 39 14 50)(11 92 15 62 26 57 79 46)(12 69 80 87 27 41 16 52)
(1 2 3 4 5 6 7 8 9 10 11 12)(13 14 15 16 17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80 81 82 83 84)(85 86 87 88 89 90 91 92 93 94 95 96)
(1 38 7 44)(2 37 8 43)(3 48 9 42)(4 47 10 41)(5 46 11 40)(6 45 12 39)(13 53 19 59)(14 52 20 58)(15 51 21 57)(16 50 22 56)(17 49 23 55)(18 60 24 54)(25 69 31 63)(26 68 32 62)(27 67 33 61)(28 66 34 72)(29 65 35 71)(30 64 36 70)(73 92 79 86)(74 91 80 85)(75 90 81 96)(76 89 82 95)(77 88 83 94)(78 87 84 93)

G:=sub<Sym(96)| (1,7)(2,8)(3,9)(4,10)(5,11)(6,12)(13,19)(14,20)(15,21)(16,22)(17,23)(18,24)(25,31)(26,32)(27,33)(28,34)(29,35)(30,36)(37,43)(38,44)(39,45)(40,46)(41,47)(42,48)(49,55)(50,56)(51,57)(52,58)(53,59)(54,60)(61,67)(62,68)(63,69)(64,70)(65,71)(66,72)(73,79)(74,80)(75,81)(76,82)(77,83)(78,84)(85,91)(86,92)(87,93)(88,94)(89,95)(90,96), (1,94,17,64,28,59,81,48)(2,71,82,89,29,43,18,54)(3,96,19,66,30,49,83,38)(4,61,84,91,31,45,20,56)(5,86,21,68,32,51,73,40)(6,63,74,93,33,47,22,58)(7,88,23,70,34,53,75,42)(8,65,76,95,35,37,24,60)(9,90,13,72,36,55,77,44)(10,67,78,85,25,39,14,50)(11,92,15,62,26,57,79,46)(12,69,80,87,27,41,16,52), (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96), (1,38,7,44)(2,37,8,43)(3,48,9,42)(4,47,10,41)(5,46,11,40)(6,45,12,39)(13,53,19,59)(14,52,20,58)(15,51,21,57)(16,50,22,56)(17,49,23,55)(18,60,24,54)(25,69,31,63)(26,68,32,62)(27,67,33,61)(28,66,34,72)(29,65,35,71)(30,64,36,70)(73,92,79,86)(74,91,80,85)(75,90,81,96)(76,89,82,95)(77,88,83,94)(78,87,84,93)>;

G:=Group( (1,7)(2,8)(3,9)(4,10)(5,11)(6,12)(13,19)(14,20)(15,21)(16,22)(17,23)(18,24)(25,31)(26,32)(27,33)(28,34)(29,35)(30,36)(37,43)(38,44)(39,45)(40,46)(41,47)(42,48)(49,55)(50,56)(51,57)(52,58)(53,59)(54,60)(61,67)(62,68)(63,69)(64,70)(65,71)(66,72)(73,79)(74,80)(75,81)(76,82)(77,83)(78,84)(85,91)(86,92)(87,93)(88,94)(89,95)(90,96), (1,94,17,64,28,59,81,48)(2,71,82,89,29,43,18,54)(3,96,19,66,30,49,83,38)(4,61,84,91,31,45,20,56)(5,86,21,68,32,51,73,40)(6,63,74,93,33,47,22,58)(7,88,23,70,34,53,75,42)(8,65,76,95,35,37,24,60)(9,90,13,72,36,55,77,44)(10,67,78,85,25,39,14,50)(11,92,15,62,26,57,79,46)(12,69,80,87,27,41,16,52), (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96), (1,38,7,44)(2,37,8,43)(3,48,9,42)(4,47,10,41)(5,46,11,40)(6,45,12,39)(13,53,19,59)(14,52,20,58)(15,51,21,57)(16,50,22,56)(17,49,23,55)(18,60,24,54)(25,69,31,63)(26,68,32,62)(27,67,33,61)(28,66,34,72)(29,65,35,71)(30,64,36,70)(73,92,79,86)(74,91,80,85)(75,90,81,96)(76,89,82,95)(77,88,83,94)(78,87,84,93) );

G=PermutationGroup([[(1,7),(2,8),(3,9),(4,10),(5,11),(6,12),(13,19),(14,20),(15,21),(16,22),(17,23),(18,24),(25,31),(26,32),(27,33),(28,34),(29,35),(30,36),(37,43),(38,44),(39,45),(40,46),(41,47),(42,48),(49,55),(50,56),(51,57),(52,58),(53,59),(54,60),(61,67),(62,68),(63,69),(64,70),(65,71),(66,72),(73,79),(74,80),(75,81),(76,82),(77,83),(78,84),(85,91),(86,92),(87,93),(88,94),(89,95),(90,96)], [(1,94,17,64,28,59,81,48),(2,71,82,89,29,43,18,54),(3,96,19,66,30,49,83,38),(4,61,84,91,31,45,20,56),(5,86,21,68,32,51,73,40),(6,63,74,93,33,47,22,58),(7,88,23,70,34,53,75,42),(8,65,76,95,35,37,24,60),(9,90,13,72,36,55,77,44),(10,67,78,85,25,39,14,50),(11,92,15,62,26,57,79,46),(12,69,80,87,27,41,16,52)], [(1,2,3,4,5,6,7,8,9,10,11,12),(13,14,15,16,17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80,81,82,83,84),(85,86,87,88,89,90,91,92,93,94,95,96)], [(1,38,7,44),(2,37,8,43),(3,48,9,42),(4,47,10,41),(5,46,11,40),(6,45,12,39),(13,53,19,59),(14,52,20,58),(15,51,21,57),(16,50,22,56),(17,49,23,55),(18,60,24,54),(25,69,31,63),(26,68,32,62),(27,67,33,61),(28,66,34,72),(29,65,35,71),(30,64,36,70),(73,92,79,86),(74,91,80,85),(75,90,81,96),(76,89,82,95),(77,88,83,94),(78,87,84,93)]])

Matrix representation of (C2×C8).D6 in GL6(𝔽73)

7200000
0720000
001000
000100
000010
000001
,
4600000
0460000
003468395
005396834
0034683468
00539539
,
2780000
0460000
006659147
00147667
00147714
006675966
,
4600000
18270000
0034393934
005396834
0039343934
0068346834

G:=sub<GL(6,GF(73))| [72,0,0,0,0,0,0,72,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[46,0,0,0,0,0,0,46,0,0,0,0,0,0,34,5,34,5,0,0,68,39,68,39,0,0,39,68,34,5,0,0,5,34,68,39],[27,0,0,0,0,0,8,46,0,0,0,0,0,0,66,14,14,66,0,0,59,7,7,7,0,0,14,66,7,59,0,0,7,7,14,66],[46,18,0,0,0,0,0,27,0,0,0,0,0,0,34,5,39,68,0,0,39,39,34,34,0,0,39,68,39,68,0,0,34,34,34,34] >;

(C2×C8).D6 in GAP, Magma, Sage, TeX

(C_2\times C_8).D_6
% in TeX

G:=Group("(C2xC8).D6");
// GroupNames label

G:=SmallGroup(192,353);
// by ID

G=gap.SmallGroup(192,353);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-3,112,253,120,1094,135,184,570,297,136,6278]);
// Polycyclic

G:=Group<a,b,c,d|a^2=b^8=1,c^6=d^2=a,a*b=b*a,a*c=c*a,a*d=d*a,c*b*c^-1=a*b^3,d*b*d^-1=a*b^-1,d*c*d^-1=a*c^5>;
// generators/relations

Export

Character table of (C2×C8).D6 in TeX

׿
×
𝔽