Copied to
clipboard

G = A4⋊C16order 192 = 26·3

The semidirect product of A4 and C16 acting via C16/C8=C2

non-abelian, soluble, monomial

Aliases: A4⋊C16, C8.6S4, (C2×A4).C8, C22⋊(C3⋊C16), C23.(C3⋊C8), (C4×A4).2C4, (C8×A4).3C2, C4.4(A4⋊C4), C2.1(A4⋊C8), (C22×C8).1S3, (C22×C4).1Dic3, SmallGroup(192,186)

Series: Derived Chief Lower central Upper central

C1C22A4 — A4⋊C16
C1C22A4C2×A4C4×A4C8×A4 — A4⋊C16
A4 — A4⋊C16
C1C8

Generators and relations for A4⋊C16
 G = < a,b,c,d | a2=b2=c3=d16=1, cac-1=dad-1=ab=ba, cbc-1=a, bd=db, dcd-1=c-1 >

3C2
3C2
4C3
3C4
3C22
3C22
4C6
3C2×C4
3C2×C4
3C8
4C12
3C2×C8
3C2×C8
6C16
6C16
4C24
3C2×C16
3C2×C16
4C3⋊C16
3C22⋊C16

Smallest permutation representation of A4⋊C16
On 48 points
Generators in S48
(1 9)(3 11)(5 13)(7 15)(17 25)(19 27)(21 29)(23 31)(33 41)(34 42)(35 43)(36 44)(37 45)(38 46)(39 47)(40 48)
(1 9)(2 10)(3 11)(4 12)(5 13)(6 14)(7 15)(8 16)(17 25)(18 26)(19 27)(20 28)(21 29)(22 30)(23 31)(24 32)
(1 24 34)(2 35 25)(3 26 36)(4 37 27)(5 28 38)(6 39 29)(7 30 40)(8 41 31)(9 32 42)(10 43 17)(11 18 44)(12 45 19)(13 20 46)(14 47 21)(15 22 48)(16 33 23)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48)

G:=sub<Sym(48)| (1,9)(3,11)(5,13)(7,15)(17,25)(19,27)(21,29)(23,31)(33,41)(34,42)(35,43)(36,44)(37,45)(38,46)(39,47)(40,48), (1,9)(2,10)(3,11)(4,12)(5,13)(6,14)(7,15)(8,16)(17,25)(18,26)(19,27)(20,28)(21,29)(22,30)(23,31)(24,32), (1,24,34)(2,35,25)(3,26,36)(4,37,27)(5,28,38)(6,39,29)(7,30,40)(8,41,31)(9,32,42)(10,43,17)(11,18,44)(12,45,19)(13,20,46)(14,47,21)(15,22,48)(16,33,23), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48)>;

G:=Group( (1,9)(3,11)(5,13)(7,15)(17,25)(19,27)(21,29)(23,31)(33,41)(34,42)(35,43)(36,44)(37,45)(38,46)(39,47)(40,48), (1,9)(2,10)(3,11)(4,12)(5,13)(6,14)(7,15)(8,16)(17,25)(18,26)(19,27)(20,28)(21,29)(22,30)(23,31)(24,32), (1,24,34)(2,35,25)(3,26,36)(4,37,27)(5,28,38)(6,39,29)(7,30,40)(8,41,31)(9,32,42)(10,43,17)(11,18,44)(12,45,19)(13,20,46)(14,47,21)(15,22,48)(16,33,23), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48) );

G=PermutationGroup([[(1,9),(3,11),(5,13),(7,15),(17,25),(19,27),(21,29),(23,31),(33,41),(34,42),(35,43),(36,44),(37,45),(38,46),(39,47),(40,48)], [(1,9),(2,10),(3,11),(4,12),(5,13),(6,14),(7,15),(8,16),(17,25),(18,26),(19,27),(20,28),(21,29),(22,30),(23,31),(24,32)], [(1,24,34),(2,35,25),(3,26,36),(4,37,27),(5,28,38),(6,39,29),(7,30,40),(8,41,31),(9,32,42),(10,43,17),(11,18,44),(12,45,19),(13,20,46),(14,47,21),(15,22,48),(16,33,23)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48)]])

40 conjugacy classes

class 1 2A2B2C 3 4A4B4C4D 6 8A8B8C8D8E8F8G8H12A12B16A···16P24A24B24C24D
order122234444688888888121216···1624242424
size113381133811113333886···68888

40 irreducible representations

dim1111122223333
type+++-+
imageC1C2C4C8C16S3Dic3C3⋊C8C3⋊C16S4A4⋊C4A4⋊C8A4⋊C16
kernelA4⋊C16C8×A4C4×A4C2×A4A4C22×C8C22×C4C23C22C8C4C2C1
# reps1124811242248

Matrix representation of A4⋊C16 in GL3(𝔽97) generated by

9600
0960
111
,
9600
010
09696
,
010
969695
001
,
858573
0120
0012
G:=sub<GL(3,GF(97))| [96,0,1,0,96,1,0,0,1],[96,0,0,0,1,96,0,0,96],[0,96,0,1,96,0,0,95,1],[85,0,0,85,12,0,73,0,12] >;

A4⋊C16 in GAP, Magma, Sage, TeX

A_4\rtimes C_{16}
% in TeX

G:=Group("A4:C16");
// GroupNames label

G:=SmallGroup(192,186);
// by ID

G=gap.SmallGroup(192,186);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-3,-2,2,14,36,58,1124,4037,285,2358,475]);
// Polycyclic

G:=Group<a,b,c,d|a^2=b^2=c^3=d^16=1,c*a*c^-1=d*a*d^-1=a*b=b*a,c*b*c^-1=a,b*d=d*b,d*c*d^-1=c^-1>;
// generators/relations

Export

Subgroup lattice of A4⋊C16 in TeX

׿
×
𝔽