non-abelian, soluble, monomial
Aliases: A4⋊C4, C2.1S4, C23.S3, C22⋊Dic3, (C2×A4).C2, SL2(ℤ/4ℤ), SmallGroup(48,30)
Series: Derived ►Chief ►Lower central ►Upper central
A4 — A4⋊C4 |
Generators and relations for A4⋊C4
G = < a,b,c,d | a2=b2=c3=d4=1, cac-1=dad-1=ab=ba, cbc-1=a, bd=db, dcd-1=c-1 >
Character table of A4⋊C4
class | 1 | 2A | 2B | 2C | 3 | 4A | 4B | 4C | 4D | 6 | |
size | 1 | 1 | 3 | 3 | 8 | 6 | 6 | 6 | 6 | 8 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | linear of order 2 |
ρ3 | 1 | -1 | 1 | -1 | 1 | -i | i | -i | i | -1 | linear of order 4 |
ρ4 | 1 | -1 | 1 | -1 | 1 | i | -i | i | -i | -1 | linear of order 4 |
ρ5 | 2 | 2 | 2 | 2 | -1 | 0 | 0 | 0 | 0 | -1 | orthogonal lifted from S3 |
ρ6 | 2 | -2 | 2 | -2 | -1 | 0 | 0 | 0 | 0 | 1 | symplectic lifted from Dic3, Schur index 2 |
ρ7 | 3 | 3 | -1 | -1 | 0 | 1 | 1 | -1 | -1 | 0 | orthogonal lifted from S4 |
ρ8 | 3 | 3 | -1 | -1 | 0 | -1 | -1 | 1 | 1 | 0 | orthogonal lifted from S4 |
ρ9 | 3 | -3 | -1 | 1 | 0 | i | -i | -i | i | 0 | complex faithful |
ρ10 | 3 | -3 | -1 | 1 | 0 | -i | i | i | -i | 0 | complex faithful |
(1 2)(3 4)(5 7)(6 12)(8 10)(9 11)
(1 3)(2 4)(5 9)(6 10)(7 11)(8 12)
(1 10 5)(2 6 11)(3 12 7)(4 8 9)
(1 2 3 4)(5 6 7 8)(9 10 11 12)
G:=sub<Sym(12)| (1,2)(3,4)(5,7)(6,12)(8,10)(9,11), (1,3)(2,4)(5,9)(6,10)(7,11)(8,12), (1,10,5)(2,6,11)(3,12,7)(4,8,9), (1,2,3,4)(5,6,7,8)(9,10,11,12)>;
G:=Group( (1,2)(3,4)(5,7)(6,12)(8,10)(9,11), (1,3)(2,4)(5,9)(6,10)(7,11)(8,12), (1,10,5)(2,6,11)(3,12,7)(4,8,9), (1,2,3,4)(5,6,7,8)(9,10,11,12) );
G=PermutationGroup([[(1,2),(3,4),(5,7),(6,12),(8,10),(9,11)], [(1,3),(2,4),(5,9),(6,10),(7,11),(8,12)], [(1,10,5),(2,6,11),(3,12,7),(4,8,9)], [(1,2,3,4),(5,6,7,8),(9,10,11,12)]])
G:=TransitiveGroup(12,27);
(1 3)(6 8)(9 11)(10 12)
(1 3)(2 4)(5 7)(6 8)
(1 7 9)(2 10 8)(3 5 11)(4 12 6)
(1 2 3 4)(5 6 7 8)(9 10 11 12)
G:=sub<Sym(12)| (1,3)(6,8)(9,11)(10,12), (1,3)(2,4)(5,7)(6,8), (1,7,9)(2,10,8)(3,5,11)(4,12,6), (1,2,3,4)(5,6,7,8)(9,10,11,12)>;
G:=Group( (1,3)(6,8)(9,11)(10,12), (1,3)(2,4)(5,7)(6,8), (1,7,9)(2,10,8)(3,5,11)(4,12,6), (1,2,3,4)(5,6,7,8)(9,10,11,12) );
G=PermutationGroup([[(1,3),(6,8),(9,11),(10,12)], [(1,3),(2,4),(5,7),(6,8)], [(1,7,9),(2,10,8),(3,5,11),(4,12,6)], [(1,2,3,4),(5,6,7,8),(9,10,11,12)]])
G:=TransitiveGroup(12,30);
(1 12)(2 7)(3 10)(4 5)(6 16)(8 14)(9 13)(11 15)
(1 16)(2 13)(3 14)(4 15)(5 11)(6 12)(7 9)(8 10)
(5 15 11)(6 12 16)(7 13 9)(8 10 14)
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)
G:=sub<Sym(16)| (1,12)(2,7)(3,10)(4,5)(6,16)(8,14)(9,13)(11,15), (1,16)(2,13)(3,14)(4,15)(5,11)(6,12)(7,9)(8,10), (5,15,11)(6,12,16)(7,13,9)(8,10,14), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)>;
G:=Group( (1,12)(2,7)(3,10)(4,5)(6,16)(8,14)(9,13)(11,15), (1,16)(2,13)(3,14)(4,15)(5,11)(6,12)(7,9)(8,10), (5,15,11)(6,12,16)(7,13,9)(8,10,14), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16) );
G=PermutationGroup([[(1,12),(2,7),(3,10),(4,5),(6,16),(8,14),(9,13),(11,15)], [(1,16),(2,13),(3,14),(4,15),(5,11),(6,12),(7,9),(8,10)], [(5,15,11),(6,12,16),(7,13,9),(8,10,14)], [(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16)]])
G:=TransitiveGroup(16,62);
(1 11)(2 4)(3 9)(5 7)(6 15)(8 13)(10 12)(14 16)(17 23)(18 22)(19 21)(20 24)
(1 9)(2 10)(3 11)(4 12)(5 16)(6 13)(7 14)(8 15)(17 19)(18 20)(21 23)(22 24)
(1 7 19)(2 20 8)(3 5 17)(4 18 6)(9 16 21)(10 22 13)(11 14 23)(12 24 15)
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)(17 18 19 20)(21 22 23 24)
G:=sub<Sym(24)| (1,11)(2,4)(3,9)(5,7)(6,15)(8,13)(10,12)(14,16)(17,23)(18,22)(19,21)(20,24), (1,9)(2,10)(3,11)(4,12)(5,16)(6,13)(7,14)(8,15)(17,19)(18,20)(21,23)(22,24), (1,7,19)(2,20,8)(3,5,17)(4,18,6)(9,16,21)(10,22,13)(11,14,23)(12,24,15), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)>;
G:=Group( (1,11)(2,4)(3,9)(5,7)(6,15)(8,13)(10,12)(14,16)(17,23)(18,22)(19,21)(20,24), (1,9)(2,10)(3,11)(4,12)(5,16)(6,13)(7,14)(8,15)(17,19)(18,20)(21,23)(22,24), (1,7,19)(2,20,8)(3,5,17)(4,18,6)(9,16,21)(10,22,13)(11,14,23)(12,24,15), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24) );
G=PermutationGroup([[(1,11),(2,4),(3,9),(5,7),(6,15),(8,13),(10,12),(14,16),(17,23),(18,22),(19,21),(20,24)], [(1,9),(2,10),(3,11),(4,12),(5,16),(6,13),(7,14),(8,15),(17,19),(18,20),(21,23),(22,24)], [(1,7,19),(2,20,8),(3,5,17),(4,18,6),(9,16,21),(10,22,13),(11,14,23),(12,24,15)], [(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16),(17,18,19,20),(21,22,23,24)]])
G:=TransitiveGroup(24,51);
(1 16)(3 14)(5 10)(6 11)(7 12)(8 9)(17 22)(19 24)
(1 16)(2 13)(3 14)(4 15)(17 22)(18 23)(19 24)(20 21)
(1 23 9)(2 10 24)(3 21 11)(4 12 22)(5 19 13)(6 14 20)(7 17 15)(8 16 18)
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)(17 18 19 20)(21 22 23 24)
G:=sub<Sym(24)| (1,16)(3,14)(5,10)(6,11)(7,12)(8,9)(17,22)(19,24), (1,16)(2,13)(3,14)(4,15)(17,22)(18,23)(19,24)(20,21), (1,23,9)(2,10,24)(3,21,11)(4,12,22)(5,19,13)(6,14,20)(7,17,15)(8,16,18), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)>;
G:=Group( (1,16)(3,14)(5,10)(6,11)(7,12)(8,9)(17,22)(19,24), (1,16)(2,13)(3,14)(4,15)(17,22)(18,23)(19,24)(20,21), (1,23,9)(2,10,24)(3,21,11)(4,12,22)(5,19,13)(6,14,20)(7,17,15)(8,16,18), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24) );
G=PermutationGroup([[(1,16),(3,14),(5,10),(6,11),(7,12),(8,9),(17,22),(19,24)], [(1,16),(2,13),(3,14),(4,15),(17,22),(18,23),(19,24),(20,21)], [(1,23,9),(2,10,24),(3,21,11),(4,12,22),(5,19,13),(6,14,20),(7,17,15),(8,16,18)], [(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16),(17,18,19,20),(21,22,23,24)]])
G:=TransitiveGroup(24,57);
A4⋊C4 is a maximal subgroup of
A4⋊Q8 C4×S4 A4⋊D4 C6.7S4 C23.7S4 C23.9S4 C24⋊Dic3 C42⋊Dic3 Q8.1S4 C23.S4 Q8.S4 C24⋊4Dic3 A5⋊C4 A4⋊Dic5 A4⋊F5 A4⋊Dic7 C62⋊Dic3
A4⋊C4 is a maximal quotient of
A4⋊C8 Q8⋊Dic3 U2(𝔽3) C6.S4 C6.7S4 C23.9S4 C24⋊Dic3 C42⋊Dic3 C24⋊4Dic3 A4⋊Dic5 A4⋊F5 A4⋊Dic7 C62⋊Dic3
action | f(x) | Disc(f) |
---|---|---|
12T27 | x12-4x11-20x10+68x9+154x8-384x7-496x6+880x5+524x4-816x3-16x2+144x-8 | 276·36·52·377 |
12T30 | x12-20x10+131x8-384x6+527x4-296x2+37 | 236·377·674 |
Matrix representation of A4⋊C4 ►in GL3(𝔽5) generated by
2 | 1 | 0 |
2 | 3 | 0 |
1 | 2 | 4 |
4 | 4 | 2 |
0 | 2 | 4 |
0 | 3 | 3 |
1 | 0 | 3 |
3 | 0 | 3 |
2 | 1 | 4 |
3 | 3 | 4 |
3 | 1 | 2 |
4 | 2 | 3 |
G:=sub<GL(3,GF(5))| [2,2,1,1,3,2,0,0,4],[4,0,0,4,2,3,2,4,3],[1,3,2,0,0,1,3,3,4],[3,3,4,3,1,2,4,2,3] >;
A4⋊C4 in GAP, Magma, Sage, TeX
A_4\rtimes C_4
% in TeX
G:=Group("A4:C4");
// GroupNames label
G:=SmallGroup(48,30);
// by ID
G=gap.SmallGroup(48,30);
# by ID
G:=PCGroup([5,-2,-2,-3,-2,2,10,122,483,133,304,239]);
// Polycyclic
G:=Group<a,b,c,d|a^2=b^2=c^3=d^4=1,c*a*c^-1=d*a*d^-1=a*b=b*a,c*b*c^-1=a,b*d=d*b,d*c*d^-1=c^-1>;
// generators/relations
Export
Subgroup lattice of A4⋊C4 in TeX
Character table of A4⋊C4 in TeX