Extensions 1→N→G→Q→1 with N=C8×A4 and Q=C2

Direct product G=N×Q with N=C8×A4 and Q=C2
dρLabelID
A4×C2×C848A4xC2xC8192,1010

Semidirect products G=N:Q with N=C8×A4 and Q=C2
extensionφ:Q→Out NdρLabelID
(C8×A4)⋊1C2 = A4⋊D8φ: C2/C1C2 ⊆ Out C8×A4246+(C8xA4):1C2192,961
(C8×A4)⋊2C2 = C82S4φ: C2/C1C2 ⊆ Out C8×A4246(C8xA4):2C2192,960
(C8×A4)⋊3C2 = A4×D8φ: C2/C1C2 ⊆ Out C8×A4246+(C8xA4):3C2192,1014
(C8×A4)⋊4C2 = C8×S4φ: C2/C1C2 ⊆ Out C8×A4243(C8xA4):4C2192,958
(C8×A4)⋊5C2 = C8⋊S4φ: C2/C1C2 ⊆ Out C8×A4246(C8xA4):5C2192,959
(C8×A4)⋊6C2 = A4×SD16φ: C2/C1C2 ⊆ Out C8×A4246(C8xA4):6C2192,1015
(C8×A4)⋊7C2 = A4×M4(2)φ: C2/C1C2 ⊆ Out C8×A4246(C8xA4):7C2192,1011

Non-split extensions G=N.Q with N=C8×A4 and Q=C2
extensionφ:Q→Out NdρLabelID
(C8×A4).1C2 = A4⋊Q16φ: C2/C1C2 ⊆ Out C8×A4486-(C8xA4).1C2192,957
(C8×A4).2C2 = A4×Q16φ: C2/C1C2 ⊆ Out C8×A4486-(C8xA4).2C2192,1016
(C8×A4).3C2 = A4⋊C16φ: C2/C1C2 ⊆ Out C8×A4483(C8xA4).3C2192,186
(C8×A4).4C2 = A4×C16φ: trivial image483(C8xA4).4C2192,203

׿
×
𝔽