non-abelian, soluble, monomial
Aliases: A4⋊C8, C4.4S4, C23.Dic3, (C2×A4).C4, C22⋊(C3⋊C8), (C4×A4).2C2, C2.1(A4⋊C4), (C22×C4).1S3, SmallGroup(96,65)
Series: Derived ►Chief ►Lower central ►Upper central
A4 — A4⋊C8 |
Generators and relations for A4⋊C8
G = < a,b,c,d | a2=b2=c3=d8=1, cac-1=dad-1=ab=ba, cbc-1=a, bd=db, dcd-1=c-1 >
Character table of A4⋊C8
class | 1 | 2A | 2B | 2C | 3 | 4A | 4B | 4C | 4D | 6 | 8A | 8B | 8C | 8D | 8E | 8F | 8G | 8H | 12A | 12B | |
size | 1 | 1 | 3 | 3 | 8 | 1 | 1 | 3 | 3 | 8 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 8 | 8 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | linear of order 2 |
ρ3 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | -i | i | i | i | -i | -i | -i | i | -1 | -1 | linear of order 4 |
ρ4 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | i | -i | -i | -i | i | i | i | -i | -1 | -1 | linear of order 4 |
ρ5 | 1 | -1 | 1 | -1 | 1 | -i | i | i | -i | -1 | ζ85 | ζ83 | ζ87 | ζ87 | ζ8 | ζ8 | ζ85 | ζ83 | -i | i | linear of order 8 |
ρ6 | 1 | -1 | 1 | -1 | 1 | -i | i | i | -i | -1 | ζ8 | ζ87 | ζ83 | ζ83 | ζ85 | ζ85 | ζ8 | ζ87 | -i | i | linear of order 8 |
ρ7 | 1 | -1 | 1 | -1 | 1 | i | -i | -i | i | -1 | ζ87 | ζ8 | ζ85 | ζ85 | ζ83 | ζ83 | ζ87 | ζ8 | i | -i | linear of order 8 |
ρ8 | 1 | -1 | 1 | -1 | 1 | i | -i | -i | i | -1 | ζ83 | ζ85 | ζ8 | ζ8 | ζ87 | ζ87 | ζ83 | ζ85 | i | -i | linear of order 8 |
ρ9 | 2 | 2 | 2 | 2 | -1 | 2 | 2 | 2 | 2 | -1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -1 | -1 | orthogonal lifted from S3 |
ρ10 | 2 | 2 | 2 | 2 | -1 | -2 | -2 | -2 | -2 | -1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | symplectic lifted from Dic3, Schur index 2 |
ρ11 | 2 | -2 | 2 | -2 | -1 | -2i | 2i | 2i | -2i | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | i | -i | complex lifted from C3⋊C8 |
ρ12 | 2 | -2 | 2 | -2 | -1 | 2i | -2i | -2i | 2i | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -i | i | complex lifted from C3⋊C8 |
ρ13 | 3 | 3 | -1 | -1 | 0 | 3 | 3 | -1 | -1 | 0 | 1 | 1 | -1 | 1 | -1 | 1 | -1 | -1 | 0 | 0 | orthogonal lifted from S4 |
ρ14 | 3 | 3 | -1 | -1 | 0 | 3 | 3 | -1 | -1 | 0 | -1 | -1 | 1 | -1 | 1 | -1 | 1 | 1 | 0 | 0 | orthogonal lifted from S4 |
ρ15 | 3 | 3 | -1 | -1 | 0 | -3 | -3 | 1 | 1 | 0 | -i | i | -i | i | i | -i | i | -i | 0 | 0 | complex lifted from A4⋊C4 |
ρ16 | 3 | 3 | -1 | -1 | 0 | -3 | -3 | 1 | 1 | 0 | i | -i | i | -i | -i | i | -i | i | 0 | 0 | complex lifted from A4⋊C4 |
ρ17 | 3 | -3 | -1 | 1 | 0 | -3i | 3i | -i | i | 0 | ζ8 | ζ87 | ζ87 | ζ83 | ζ8 | ζ85 | ζ85 | ζ83 | 0 | 0 | complex faithful |
ρ18 | 3 | -3 | -1 | 1 | 0 | -3i | 3i | -i | i | 0 | ζ85 | ζ83 | ζ83 | ζ87 | ζ85 | ζ8 | ζ8 | ζ87 | 0 | 0 | complex faithful |
ρ19 | 3 | -3 | -1 | 1 | 0 | 3i | -3i | i | -i | 0 | ζ87 | ζ8 | ζ8 | ζ85 | ζ87 | ζ83 | ζ83 | ζ85 | 0 | 0 | complex faithful |
ρ20 | 3 | -3 | -1 | 1 | 0 | 3i | -3i | i | -i | 0 | ζ83 | ζ85 | ζ85 | ζ8 | ζ83 | ζ87 | ζ87 | ζ8 | 0 | 0 | complex faithful |
(1 5)(3 7)(9 13)(10 14)(11 15)(12 16)(18 22)(20 24)
(1 5)(2 6)(3 7)(4 8)(17 21)(18 22)(19 23)(20 24)
(1 19 11)(2 12 20)(3 21 13)(4 14 22)(5 23 15)(6 16 24)(7 17 9)(8 10 18)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)
G:=sub<Sym(24)| (1,5)(3,7)(9,13)(10,14)(11,15)(12,16)(18,22)(20,24), (1,5)(2,6)(3,7)(4,8)(17,21)(18,22)(19,23)(20,24), (1,19,11)(2,12,20)(3,21,13)(4,14,22)(5,23,15)(6,16,24)(7,17,9)(8,10,18), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)>;
G:=Group( (1,5)(3,7)(9,13)(10,14)(11,15)(12,16)(18,22)(20,24), (1,5)(2,6)(3,7)(4,8)(17,21)(18,22)(19,23)(20,24), (1,19,11)(2,12,20)(3,21,13)(4,14,22)(5,23,15)(6,16,24)(7,17,9)(8,10,18), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24) );
G=PermutationGroup([[(1,5),(3,7),(9,13),(10,14),(11,15),(12,16),(18,22),(20,24)], [(1,5),(2,6),(3,7),(4,8),(17,21),(18,22),(19,23),(20,24)], [(1,19,11),(2,12,20),(3,21,13),(4,14,22),(5,23,15),(6,16,24),(7,17,9),(8,10,18)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24)]])
G:=TransitiveGroup(24,89);
A4⋊C8 is a maximal subgroup of
C8×S4 C8⋊S4 A4⋊M4(2) A4⋊SD16 D4⋊S4 A4⋊2Q16 Q8⋊3S4 C12.12S4 A5⋊C8 C20.S4 Dic5.S4
A4⋊C8 is a maximal quotient of
C2.U2(𝔽3) A4⋊C16 C8.7S4 C12.S4 C12.12S4 C20.S4 Dic5.S4
Matrix representation of A4⋊C8 ►in GL3(𝔽73) generated by
72 | 0 | 0 |
0 | 72 | 0 |
72 | 0 | 1 |
72 | 0 | 0 |
72 | 1 | 0 |
0 | 0 | 72 |
1 | 71 | 0 |
0 | 72 | 1 |
0 | 72 | 0 |
63 | 0 | 20 |
0 | 63 | 10 |
0 | 0 | 10 |
G:=sub<GL(3,GF(73))| [72,0,72,0,72,0,0,0,1],[72,72,0,0,1,0,0,0,72],[1,0,0,71,72,72,0,1,0],[63,0,0,0,63,0,20,10,10] >;
A4⋊C8 in GAP, Magma, Sage, TeX
A_4\rtimes C_8
% in TeX
G:=Group("A4:C8");
// GroupNames label
G:=SmallGroup(96,65);
// by ID
G=gap.SmallGroup(96,65);
# by ID
G:=PCGroup([6,-2,-2,-2,-3,-2,2,12,31,387,1444,202,869,347]);
// Polycyclic
G:=Group<a,b,c,d|a^2=b^2=c^3=d^8=1,c*a*c^-1=d*a*d^-1=a*b=b*a,c*b*c^-1=a,b*d=d*b,d*c*d^-1=c^-1>;
// generators/relations
Export
Subgroup lattice of A4⋊C8 in TeX
Character table of A4⋊C8 in TeX