Copied to
clipboard

G = C16.A4order 192 = 26·3

The central extension by C16 of A4

non-abelian, soluble

Aliases: C16.A4, Q8.C24, SL2(𝔽3).2C8, D4○C16⋊C3, C8.7(C2×A4), C2.3(C8×A4), C4.5(C4×A4), C8○D4.2C6, C4.A4.3C4, C8.A4.3C2, C4○D4.2C12, SmallGroup(192,204)

Series: Derived Chief Lower central Upper central

C1C2Q8 — C16.A4
C1C2Q8C4○D4C8○D4C8.A4 — C16.A4
Q8 — C16.A4
C1C16

Generators and relations for C16.A4
 G = < a,b,c,d | a16=d3=1, b2=c2=a8, ab=ba, ac=ca, ad=da, cbc-1=a8b, dbd-1=a8bc, dcd-1=b >

6C2
4C3
3C22
3C4
4C6
3D4
3C8
3C2×C4
4C12
3M4(2)
3C16
3C2×C8
4C24
3M5(2)
3C2×C16
4C48

Smallest permutation representation of C16.A4
On 64 points
Generators in S64
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64)
(1 29 9 21)(2 30 10 22)(3 31 11 23)(4 32 12 24)(5 17 13 25)(6 18 14 26)(7 19 15 27)(8 20 16 28)(33 53 41 61)(34 54 42 62)(35 55 43 63)(36 56 44 64)(37 57 45 49)(38 58 46 50)(39 59 47 51)(40 60 48 52)
(1 45 9 37)(2 46 10 38)(3 47 11 39)(4 48 12 40)(5 33 13 41)(6 34 14 42)(7 35 15 43)(8 36 16 44)(17 61 25 53)(18 62 26 54)(19 63 27 55)(20 64 28 56)(21 49 29 57)(22 50 30 58)(23 51 31 59)(24 52 32 60)
(17 33 53)(18 34 54)(19 35 55)(20 36 56)(21 37 57)(22 38 58)(23 39 59)(24 40 60)(25 41 61)(26 42 62)(27 43 63)(28 44 64)(29 45 49)(30 46 50)(31 47 51)(32 48 52)

G:=sub<Sym(64)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64), (1,29,9,21)(2,30,10,22)(3,31,11,23)(4,32,12,24)(5,17,13,25)(6,18,14,26)(7,19,15,27)(8,20,16,28)(33,53,41,61)(34,54,42,62)(35,55,43,63)(36,56,44,64)(37,57,45,49)(38,58,46,50)(39,59,47,51)(40,60,48,52), (1,45,9,37)(2,46,10,38)(3,47,11,39)(4,48,12,40)(5,33,13,41)(6,34,14,42)(7,35,15,43)(8,36,16,44)(17,61,25,53)(18,62,26,54)(19,63,27,55)(20,64,28,56)(21,49,29,57)(22,50,30,58)(23,51,31,59)(24,52,32,60), (17,33,53)(18,34,54)(19,35,55)(20,36,56)(21,37,57)(22,38,58)(23,39,59)(24,40,60)(25,41,61)(26,42,62)(27,43,63)(28,44,64)(29,45,49)(30,46,50)(31,47,51)(32,48,52)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64), (1,29,9,21)(2,30,10,22)(3,31,11,23)(4,32,12,24)(5,17,13,25)(6,18,14,26)(7,19,15,27)(8,20,16,28)(33,53,41,61)(34,54,42,62)(35,55,43,63)(36,56,44,64)(37,57,45,49)(38,58,46,50)(39,59,47,51)(40,60,48,52), (1,45,9,37)(2,46,10,38)(3,47,11,39)(4,48,12,40)(5,33,13,41)(6,34,14,42)(7,35,15,43)(8,36,16,44)(17,61,25,53)(18,62,26,54)(19,63,27,55)(20,64,28,56)(21,49,29,57)(22,50,30,58)(23,51,31,59)(24,52,32,60), (17,33,53)(18,34,54)(19,35,55)(20,36,56)(21,37,57)(22,38,58)(23,39,59)(24,40,60)(25,41,61)(26,42,62)(27,43,63)(28,44,64)(29,45,49)(30,46,50)(31,47,51)(32,48,52) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64)], [(1,29,9,21),(2,30,10,22),(3,31,11,23),(4,32,12,24),(5,17,13,25),(6,18,14,26),(7,19,15,27),(8,20,16,28),(33,53,41,61),(34,54,42,62),(35,55,43,63),(36,56,44,64),(37,57,45,49),(38,58,46,50),(39,59,47,51),(40,60,48,52)], [(1,45,9,37),(2,46,10,38),(3,47,11,39),(4,48,12,40),(5,33,13,41),(6,34,14,42),(7,35,15,43),(8,36,16,44),(17,61,25,53),(18,62,26,54),(19,63,27,55),(20,64,28,56),(21,49,29,57),(22,50,30,58),(23,51,31,59),(24,52,32,60)], [(17,33,53),(18,34,54),(19,35,55),(20,36,56),(21,37,57),(22,38,58),(23,39,59),(24,40,60),(25,41,61),(26,42,62),(27,43,63),(28,44,64),(29,45,49),(30,46,50),(31,47,51),(32,48,52)]])

56 conjugacy classes

class 1 2A2B3A3B4A4B4C6A6B8A8B8C8D8E8F12A12B12C12D16A···16H16I16J16K16L24A···24H48A···48P
order12233444668888881212121216···161616161624···2448···48
size116441164411116644441···166664···44···4

56 irreducible representations

dim1111111123333
type++++
imageC1C2C3C4C6C8C12C24C16.A4A4C2×A4C4×A4C8×A4
kernelC16.A4C8.A4D4○C16C4.A4C8○D4SL2(𝔽3)C4○D4Q8C1C16C8C4C2
# reps11222448241124

Matrix representation of C16.A4 in GL2(𝔽17) generated by

70
07
,
410
013
,
130
104
,
09
1516
G:=sub<GL(2,GF(17))| [7,0,0,7],[4,0,10,13],[13,10,0,4],[0,15,9,16] >;

C16.A4 in GAP, Magma, Sage, TeX

C_{16}.A_4
% in TeX

G:=Group("C16.A4");
// GroupNames label

G:=SmallGroup(192,204);
// by ID

G=gap.SmallGroup(192,204);
# by ID

G:=PCGroup([7,-2,-3,-2,-2,-2,2,-2,42,58,248,851,172,1524,285,124]);
// Polycyclic

G:=Group<a,b,c,d|a^16=d^3=1,b^2=c^2=a^8,a*b=b*a,a*c=c*a,a*d=d*a,c*b*c^-1=a^8*b,d*b*d^-1=a^8*b*c,d*c*d^-1=b>;
// generators/relations

Export

Subgroup lattice of C16.A4 in TeX

׿
×
𝔽