Extensions 1→N→G→Q→1 with N=C8 and Q=C2xA4

Direct product G=NxQ with N=C8 and Q=C2xA4
dρLabelID
A4xC2xC848A4xC2xC8192,1010

Semidirect products G=N:Q with N=C8 and Q=C2xA4
extensionφ:Q→Aut NdρLabelID
C8:1(C2xA4) = A4xD8φ: C2xA4/A4C2 ⊆ Aut C8246+C8:1(C2xA4)192,1014
C8:2(C2xA4) = A4xSD16φ: C2xA4/A4C2 ⊆ Aut C8246C8:2(C2xA4)192,1015
C8:3(C2xA4) = A4xM4(2)φ: C2xA4/A4C2 ⊆ Aut C8246C8:3(C2xA4)192,1011

Non-split extensions G=N.Q with N=C8 and Q=C2xA4
extensionφ:Q→Aut NdρLabelID
C8.1(C2xA4) = A4xQ16φ: C2xA4/A4C2 ⊆ Aut C8486-C8.1(C2xA4)192,1016
C8.2(C2xA4) = Q16.A4φ: C2xA4/A4C2 ⊆ Aut C8484+C8.2(C2xA4)192,1017
C8.3(C2xA4) = D8.A4φ: C2xA4/A4C2 ⊆ Aut C8324-C8.3(C2xA4)192,1019
C8.4(C2xA4) = SD16.A4φ: C2xA4/A4C2 ⊆ Aut C8324C8.4(C2xA4)192,1018
C8.5(C2xA4) = M4(2).A4φ: C2xA4/A4C2 ⊆ Aut C8324C8.5(C2xA4)192,1013
C8.6(C2xA4) = A4xC16central extension (φ=1)483C8.6(C2xA4)192,203
C8.7(C2xA4) = C16.A4central extension (φ=1)642C8.7(C2xA4)192,204
C8.8(C2xA4) = C2xC8.A4central extension (φ=1)64C8.8(C2xA4)192,1012

׿
x
:
Z
F
o
wr
Q
<