Copied to
clipboard

G = C2.U2(𝔽3)  order 192 = 26·3

The central extension by C2 of U2(𝔽3)

non-abelian, soluble

Aliases: C2.U2(𝔽3), SL2(𝔽3)⋊C8, C4.2GL2(𝔽3), C4.2CSU2(𝔽3), Q8⋊(C3⋊C8), (C2×C4).20S4, (C4×Q8).1S3, C2.2(A4⋊C8), C2.(Q8⋊Dic3), (C2×Q8).1Dic3, C22.7(A4⋊C4), (C2×SL2(𝔽3)).2C4, (C4×SL2(𝔽3)).7C2, SmallGroup(192,183)

Series: Derived Chief Lower central Upper central

C1C2Q8SL2(𝔽3) — C2.U2(𝔽3)
C1C2Q8SL2(𝔽3)C2×SL2(𝔽3)C4×SL2(𝔽3) — C2.U2(𝔽3)
SL2(𝔽3) — C2.U2(𝔽3)
C1C2×C4

Generators and relations for C2.U2(𝔽3)
 G = < a,b,c,d,e,f | a2=b4=e3=1, c2=d2=ab2, f2=b, ab=ba, ac=ca, ad=da, ae=ea, af=fa, bc=cb, bd=db, be=eb, bf=fb, dcd-1=ab2c, ece-1=ab2cd, fcf-1=cd, ede-1=c, fdf-1=ab2d, fef-1=e-1 >

4C3
3C4
3C4
6C4
4C6
4C6
4C6
3C2×C4
3C2×C4
3Q8
6C8
6C8
12C8
4C12
4C12
4C2×C6
3C4⋊C4
3C42
6C2×C8
6C2×C8
4C3⋊C8
4C2×C12
4C3⋊C8
3C4⋊C8
3C4×C8
4C2×C3⋊C8
3Q8⋊C8

Smallest permutation representation of C2.U2(𝔽3)
On 64 points
Generators in S64
(1 56)(2 49)(3 50)(4 51)(5 52)(6 53)(7 54)(8 55)(9 29)(10 30)(11 31)(12 32)(13 25)(14 26)(15 27)(16 28)(17 37)(18 38)(19 39)(20 40)(21 33)(22 34)(23 35)(24 36)(41 57)(42 58)(43 59)(44 60)(45 61)(46 62)(47 63)(48 64)
(1 3 5 7)(2 4 6 8)(9 11 13 15)(10 12 14 16)(17 19 21 23)(18 20 22 24)(25 27 29 31)(26 28 30 32)(33 35 37 39)(34 36 38 40)(41 43 45 47)(42 44 46 48)(49 51 53 55)(50 52 54 56)(57 59 61 63)(58 60 62 64)
(1 20 52 36)(2 13 53 29)(3 22 54 38)(4 15 55 31)(5 24 56 40)(6 9 49 25)(7 18 50 34)(8 11 51 27)(10 62 26 42)(12 64 28 44)(14 58 30 46)(16 60 32 48)(17 41 33 61)(19 43 35 63)(21 45 37 57)(23 47 39 59)
(1 64 52 44)(2 45 53 57)(3 58 54 46)(4 47 55 59)(5 60 56 48)(6 41 49 61)(7 62 50 42)(8 43 51 63)(9 17 25 33)(10 34 26 18)(11 19 27 35)(12 36 28 20)(13 21 29 37)(14 38 30 22)(15 23 31 39)(16 40 32 24)
(9 41 33)(10 34 42)(11 43 35)(12 36 44)(13 45 37)(14 38 46)(15 47 39)(16 40 48)(17 25 61)(18 62 26)(19 27 63)(20 64 28)(21 29 57)(22 58 30)(23 31 59)(24 60 32)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64)

G:=sub<Sym(64)| (1,56)(2,49)(3,50)(4,51)(5,52)(6,53)(7,54)(8,55)(9,29)(10,30)(11,31)(12,32)(13,25)(14,26)(15,27)(16,28)(17,37)(18,38)(19,39)(20,40)(21,33)(22,34)(23,35)(24,36)(41,57)(42,58)(43,59)(44,60)(45,61)(46,62)(47,63)(48,64), (1,3,5,7)(2,4,6,8)(9,11,13,15)(10,12,14,16)(17,19,21,23)(18,20,22,24)(25,27,29,31)(26,28,30,32)(33,35,37,39)(34,36,38,40)(41,43,45,47)(42,44,46,48)(49,51,53,55)(50,52,54,56)(57,59,61,63)(58,60,62,64), (1,20,52,36)(2,13,53,29)(3,22,54,38)(4,15,55,31)(5,24,56,40)(6,9,49,25)(7,18,50,34)(8,11,51,27)(10,62,26,42)(12,64,28,44)(14,58,30,46)(16,60,32,48)(17,41,33,61)(19,43,35,63)(21,45,37,57)(23,47,39,59), (1,64,52,44)(2,45,53,57)(3,58,54,46)(4,47,55,59)(5,60,56,48)(6,41,49,61)(7,62,50,42)(8,43,51,63)(9,17,25,33)(10,34,26,18)(11,19,27,35)(12,36,28,20)(13,21,29,37)(14,38,30,22)(15,23,31,39)(16,40,32,24), (9,41,33)(10,34,42)(11,43,35)(12,36,44)(13,45,37)(14,38,46)(15,47,39)(16,40,48)(17,25,61)(18,62,26)(19,27,63)(20,64,28)(21,29,57)(22,58,30)(23,31,59)(24,60,32), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)>;

G:=Group( (1,56)(2,49)(3,50)(4,51)(5,52)(6,53)(7,54)(8,55)(9,29)(10,30)(11,31)(12,32)(13,25)(14,26)(15,27)(16,28)(17,37)(18,38)(19,39)(20,40)(21,33)(22,34)(23,35)(24,36)(41,57)(42,58)(43,59)(44,60)(45,61)(46,62)(47,63)(48,64), (1,3,5,7)(2,4,6,8)(9,11,13,15)(10,12,14,16)(17,19,21,23)(18,20,22,24)(25,27,29,31)(26,28,30,32)(33,35,37,39)(34,36,38,40)(41,43,45,47)(42,44,46,48)(49,51,53,55)(50,52,54,56)(57,59,61,63)(58,60,62,64), (1,20,52,36)(2,13,53,29)(3,22,54,38)(4,15,55,31)(5,24,56,40)(6,9,49,25)(7,18,50,34)(8,11,51,27)(10,62,26,42)(12,64,28,44)(14,58,30,46)(16,60,32,48)(17,41,33,61)(19,43,35,63)(21,45,37,57)(23,47,39,59), (1,64,52,44)(2,45,53,57)(3,58,54,46)(4,47,55,59)(5,60,56,48)(6,41,49,61)(7,62,50,42)(8,43,51,63)(9,17,25,33)(10,34,26,18)(11,19,27,35)(12,36,28,20)(13,21,29,37)(14,38,30,22)(15,23,31,39)(16,40,32,24), (9,41,33)(10,34,42)(11,43,35)(12,36,44)(13,45,37)(14,38,46)(15,47,39)(16,40,48)(17,25,61)(18,62,26)(19,27,63)(20,64,28)(21,29,57)(22,58,30)(23,31,59)(24,60,32), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64) );

G=PermutationGroup([[(1,56),(2,49),(3,50),(4,51),(5,52),(6,53),(7,54),(8,55),(9,29),(10,30),(11,31),(12,32),(13,25),(14,26),(15,27),(16,28),(17,37),(18,38),(19,39),(20,40),(21,33),(22,34),(23,35),(24,36),(41,57),(42,58),(43,59),(44,60),(45,61),(46,62),(47,63),(48,64)], [(1,3,5,7),(2,4,6,8),(9,11,13,15),(10,12,14,16),(17,19,21,23),(18,20,22,24),(25,27,29,31),(26,28,30,32),(33,35,37,39),(34,36,38,40),(41,43,45,47),(42,44,46,48),(49,51,53,55),(50,52,54,56),(57,59,61,63),(58,60,62,64)], [(1,20,52,36),(2,13,53,29),(3,22,54,38),(4,15,55,31),(5,24,56,40),(6,9,49,25),(7,18,50,34),(8,11,51,27),(10,62,26,42),(12,64,28,44),(14,58,30,46),(16,60,32,48),(17,41,33,61),(19,43,35,63),(21,45,37,57),(23,47,39,59)], [(1,64,52,44),(2,45,53,57),(3,58,54,46),(4,47,55,59),(5,60,56,48),(6,41,49,61),(7,62,50,42),(8,43,51,63),(9,17,25,33),(10,34,26,18),(11,19,27,35),(12,36,28,20),(13,21,29,37),(14,38,30,22),(15,23,31,39),(16,40,32,24)], [(9,41,33),(10,34,42),(11,43,35),(12,36,44),(13,45,37),(14,38,46),(15,47,39),(16,40,48),(17,25,61),(18,62,26),(19,27,63),(20,64,28),(21,29,57),(22,58,30),(23,31,59),(24,60,32)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64)]])

32 conjugacy classes

class 1 2A2B2C 3 4A4B4C4D4E4F4G4H6A6B6C8A···8H8I8J8K8L12A12B12C12D
order12223444444446668···8888812121212
size11118111166668886···6121212128888

32 irreducible representations

dim1111222222333444
type+++--+-+
imageC1C2C4C8S3Dic3C3⋊C8CSU2(𝔽3)GL2(𝔽3)U2(𝔽3)S4A4⋊C4A4⋊C8CSU2(𝔽3)GL2(𝔽3)U2(𝔽3)
kernelC2.U2(𝔽3)C4×SL2(𝔽3)C2×SL2(𝔽3)SL2(𝔽3)C4×Q8C2×Q8Q8C4C4C2C2×C4C22C2C4C4C2
# reps1124112224224112

Matrix representation of C2.U2(𝔽3) in GL4(𝔽73) generated by

72000
07200
00720
00072
,
27000
02700
00720
00072
,
1000
0100
005843
002715
,
1000
0100
004246
001431
,
07200
17200
00072
00172
,
01000
10000
006236
002511
G:=sub<GL(4,GF(73))| [72,0,0,0,0,72,0,0,0,0,72,0,0,0,0,72],[27,0,0,0,0,27,0,0,0,0,72,0,0,0,0,72],[1,0,0,0,0,1,0,0,0,0,58,27,0,0,43,15],[1,0,0,0,0,1,0,0,0,0,42,14,0,0,46,31],[0,1,0,0,72,72,0,0,0,0,0,1,0,0,72,72],[0,10,0,0,10,0,0,0,0,0,62,25,0,0,36,11] >;

C2.U2(𝔽3) in GAP, Magma, Sage, TeX

C_2.{\rm U}_2({\mathbb F}_3)
% in TeX

G:=Group("C2.U(2,3)");
// GroupNames label

G:=SmallGroup(192,183);
// by ID

G=gap.SmallGroup(192,183);
# by ID

G:=PCGroup([7,-2,-2,-2,-3,-2,2,-2,14,36,451,1684,655,172,1013,404,285,124]);
// Polycyclic

G:=Group<a,b,c,d,e,f|a^2=b^4=e^3=1,c^2=d^2=a*b^2,f^2=b,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,a*f=f*a,b*c=c*b,b*d=d*b,b*e=e*b,b*f=f*b,d*c*d^-1=a*b^2*c,e*c*e^-1=a*b^2*c*d,f*c*f^-1=c*d,e*d*e^-1=c,f*d*f^-1=a*b^2*d,f*e*f^-1=e^-1>;
// generators/relations

Export

Subgroup lattice of C2.U2(𝔽3) in TeX

׿
×
𝔽