extension | φ:Q→Aut N | d | ρ | Label | ID |
(C2×C4).1S4 = CSU2(𝔽3)⋊C4 | φ: S4/A4 → C2 ⊆ Aut C2×C4 | 64 | | (C2xC4).1S4 | 192,947 |
(C2×C4).2S4 = Q8.Dic6 | φ: S4/A4 → C2 ⊆ Aut C2×C4 | 64 | | (C2xC4).2S4 | 192,948 |
(C2×C4).3S4 = GL2(𝔽3)⋊C4 | φ: S4/A4 → C2 ⊆ Aut C2×C4 | 32 | | (C2xC4).3S4 | 192,953 |
(C2×C4).4S4 = Q8.2D12 | φ: S4/A4 → C2 ⊆ Aut C2×C4 | 32 | | (C2xC4).4S4 | 192,954 |
(C2×C4).5S4 = C24.3D6 | φ: S4/A4 → C2 ⊆ Aut C2×C4 | 48 | | (C2xC4).5S4 | 192,970 |
(C2×C4).6S4 = SL2(𝔽3).D4 | φ: S4/A4 → C2 ⊆ Aut C2×C4 | 64 | | (C2xC4).6S4 | 192,984 |
(C2×C4).7S4 = SL2(𝔽3)⋊D4 | φ: S4/A4 → C2 ⊆ Aut C2×C4 | 32 | | (C2xC4).7S4 | 192,986 |
(C2×C4).8S4 = Q8⋊Dic6 | φ: S4/A4 → C2 ⊆ Aut C2×C4 | 64 | | (C2xC4).8S4 | 192,945 |
(C2×C4).9S4 = Q8.D12 | φ: S4/A4 → C2 ⊆ Aut C2×C4 | 64 | | (C2xC4).9S4 | 192,949 |
(C2×C4).10S4 = SL2(𝔽3)⋊Q8 | φ: S4/A4 → C2 ⊆ Aut C2×C4 | 64 | | (C2xC4).10S4 | 192,950 |
(C2×C4).11S4 = Q8⋊D12 | φ: S4/A4 → C2 ⊆ Aut C2×C4 | 32 | | (C2xC4).11S4 | 192,952 |
(C2×C4).12S4 = A4⋊M4(2) | φ: S4/A4 → C2 ⊆ Aut C2×C4 | 24 | 6 | (C2xC4).12S4 | 192,968 |
(C2×C4).13S4 = C24.4D6 | φ: S4/A4 → C2 ⊆ Aut C2×C4 | 48 | | (C2xC4).13S4 | 192,971 |
(C2×C4).14S4 = U2(𝔽3)⋊C2 | φ: S4/A4 → C2 ⊆ Aut C2×C4 | 32 | 4 | (C2xC4).14S4 | 192,982 |
(C2×C4).15S4 = (C2×C4).S4 | φ: S4/A4 → C2 ⊆ Aut C2×C4 | 64 | | (C2xC4).15S4 | 192,985 |
(C2×C4).16S4 = C2×A4⋊Q8 | φ: S4/A4 → C2 ⊆ Aut C2×C4 | 48 | | (C2xC4).16S4 | 192,1468 |
(C2×C4).17S4 = C2×C4.S4 | φ: S4/A4 → C2 ⊆ Aut C2×C4 | 64 | | (C2xC4).17S4 | 192,1479 |
(C2×C4).18S4 = C2×C4.3S4 | φ: S4/A4 → C2 ⊆ Aut C2×C4 | 32 | | (C2xC4).18S4 | 192,1481 |
(C2×C4).19S4 = GL2(𝔽3)⋊C22 | φ: S4/A4 → C2 ⊆ Aut C2×C4 | 32 | 4 | (C2xC4).19S4 | 192,1482 |
(C2×C4).20S4 = C2.U2(𝔽3) | central extension (φ=1) | 64 | | (C2xC4).20S4 | 192,183 |
(C2×C4).21S4 = C4×CSU2(𝔽3) | central extension (φ=1) | 64 | | (C2xC4).21S4 | 192,946 |
(C2×C4).22S4 = C4×GL2(𝔽3) | central extension (φ=1) | 32 | | (C2xC4).22S4 | 192,951 |
(C2×C4).23S4 = C2×A4⋊C8 | central extension (φ=1) | 48 | | (C2xC4).23S4 | 192,967 |
(C2×C4).24S4 = C4×A4⋊C4 | central extension (φ=1) | 48 | | (C2xC4).24S4 | 192,969 |
(C2×C4).25S4 = C2×U2(𝔽3) | central extension (φ=1) | 48 | | (C2xC4).25S4 | 192,981 |
(C2×C4).26S4 = C4.A4⋊C4 | central extension (φ=1) | 64 | | (C2xC4).26S4 | 192,983 |
(C2×C4).27S4 = C2×C4.6S4 | central extension (φ=1) | 32 | | (C2xC4).27S4 | 192,1480 |