Copied to
clipboard

G = C8:Dic3:C2order 192 = 26·3

15th semidirect product of C8:Dic3 and C2 acting faithfully

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: D6:C8.6C2, C4:C4.154D6, C8:Dic3:15C2, (C2xC8).125D6, (C2xQ8).45D6, Q8:C4:13S3, C6.50(C4oD8), C6.Q16:12C2, D6:3Q8.5C2, C4.58(C4oD12), Q8:2Dic3:10C2, (C22xS3).21D4, C22.205(S3xD4), C12.164(C4oD4), (C6xQ8).38C22, C4.89(D4:2S3), (C2xC24).136C22, (C2xC12).255C23, (C2xDic3).157D4, C2.17(Q16:S3), C6.63(C8.C22), C3:3(C23.20D4), C4:Dic3.99C22, C2.19(C23.9D6), C2.19(Q8.7D6), C6.27(C22.D4), C4:C4:7S3.3C2, (C2xC6).268(C2xD4), (C2xC3:C8).45C22, (S3xC2xC4).27C22, (C3xQ8:C4):13C2, (C3xC4:C4).56C22, (C2xC4).362(C22xS3), SmallGroup(192,374)

Series: Derived Chief Lower central Upper central

C1C2xC12 — C8:Dic3:C2
C1C3C6C2xC6C2xC12S3xC2xC4C4:C4:7S3 — C8:Dic3:C2
C3C6C2xC12 — C8:Dic3:C2
C1C22C2xC4Q8:C4

Generators and relations for C8:Dic3:C2
 G = < a,b,c,d | a8=b6=d2=1, c2=b3, ab=ba, cac-1=a3, dad=ab3, cbc-1=dbd=b-1, dcd=a4b3c >

Subgroups: 264 in 96 conjugacy classes, 37 normal (all characteristic)
C1, C2, C2, C3, C4, C4, C22, C22, S3, C6, C8, C2xC4, C2xC4, Q8, C23, Dic3, C12, C12, D6, C2xC6, C42, C22:C4, C4:C4, C4:C4, C2xC8, C2xC8, C22xC4, C2xQ8, C3:C8, C24, C4xS3, C2xDic3, C2xDic3, C2xC12, C2xC12, C3xQ8, C22xS3, C22:C8, Q8:C4, Q8:C4, C4.Q8, C2.D8, C42:C2, C22:Q8, C2xC3:C8, C4xDic3, Dic3:C4, C4:Dic3, D6:C4, C3xC4:C4, C2xC24, S3xC2xC4, C6xQ8, C23.20D4, C6.Q16, C8:Dic3, D6:C8, Q8:2Dic3, C3xQ8:C4, C4:C4:7S3, D6:3Q8, C8:Dic3:C2
Quotients: C1, C2, C22, S3, D4, C23, D6, C2xD4, C4oD4, C22xS3, C22.D4, C4oD8, C8.C22, C4oD12, S3xD4, D4:2S3, C23.20D4, C23.9D6, Q8.7D6, Q16:S3, C8:Dic3:C2

Smallest permutation representation of C8:Dic3:C2
On 96 points
Generators in S96
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64)(65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88)(89 90 91 92 93 94 95 96)
(1 32 21 59 74 81)(2 25 22 60 75 82)(3 26 23 61 76 83)(4 27 24 62 77 84)(5 28 17 63 78 85)(6 29 18 64 79 86)(7 30 19 57 80 87)(8 31 20 58 73 88)(9 44 39 51 71 91)(10 45 40 52 72 92)(11 46 33 53 65 93)(12 47 34 54 66 94)(13 48 35 55 67 95)(14 41 36 56 68 96)(15 42 37 49 69 89)(16 43 38 50 70 90)
(1 9 59 51)(2 12 60 54)(3 15 61 49)(4 10 62 52)(5 13 63 55)(6 16 64 50)(7 11 57 53)(8 14 58 56)(17 67 85 48)(18 70 86 43)(19 65 87 46)(20 68 88 41)(21 71 81 44)(22 66 82 47)(23 69 83 42)(24 72 84 45)(25 94 75 34)(26 89 76 37)(27 92 77 40)(28 95 78 35)(29 90 79 38)(30 93 80 33)(31 96 73 36)(32 91 74 39)
(2 60)(4 62)(6 64)(8 58)(9 55)(10 14)(11 49)(12 16)(13 51)(15 53)(17 78)(18 29)(19 80)(20 31)(21 74)(22 25)(23 76)(24 27)(26 83)(28 85)(30 87)(32 81)(33 42)(34 70)(35 44)(36 72)(37 46)(38 66)(39 48)(40 68)(41 92)(43 94)(45 96)(47 90)(50 54)(52 56)(65 89)(67 91)(69 93)(71 95)(73 88)(75 82)(77 84)(79 86)

G:=sub<Sym(96)| (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88)(89,90,91,92,93,94,95,96), (1,32,21,59,74,81)(2,25,22,60,75,82)(3,26,23,61,76,83)(4,27,24,62,77,84)(5,28,17,63,78,85)(6,29,18,64,79,86)(7,30,19,57,80,87)(8,31,20,58,73,88)(9,44,39,51,71,91)(10,45,40,52,72,92)(11,46,33,53,65,93)(12,47,34,54,66,94)(13,48,35,55,67,95)(14,41,36,56,68,96)(15,42,37,49,69,89)(16,43,38,50,70,90), (1,9,59,51)(2,12,60,54)(3,15,61,49)(4,10,62,52)(5,13,63,55)(6,16,64,50)(7,11,57,53)(8,14,58,56)(17,67,85,48)(18,70,86,43)(19,65,87,46)(20,68,88,41)(21,71,81,44)(22,66,82,47)(23,69,83,42)(24,72,84,45)(25,94,75,34)(26,89,76,37)(27,92,77,40)(28,95,78,35)(29,90,79,38)(30,93,80,33)(31,96,73,36)(32,91,74,39), (2,60)(4,62)(6,64)(8,58)(9,55)(10,14)(11,49)(12,16)(13,51)(15,53)(17,78)(18,29)(19,80)(20,31)(21,74)(22,25)(23,76)(24,27)(26,83)(28,85)(30,87)(32,81)(33,42)(34,70)(35,44)(36,72)(37,46)(38,66)(39,48)(40,68)(41,92)(43,94)(45,96)(47,90)(50,54)(52,56)(65,89)(67,91)(69,93)(71,95)(73,88)(75,82)(77,84)(79,86)>;

G:=Group( (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88)(89,90,91,92,93,94,95,96), (1,32,21,59,74,81)(2,25,22,60,75,82)(3,26,23,61,76,83)(4,27,24,62,77,84)(5,28,17,63,78,85)(6,29,18,64,79,86)(7,30,19,57,80,87)(8,31,20,58,73,88)(9,44,39,51,71,91)(10,45,40,52,72,92)(11,46,33,53,65,93)(12,47,34,54,66,94)(13,48,35,55,67,95)(14,41,36,56,68,96)(15,42,37,49,69,89)(16,43,38,50,70,90), (1,9,59,51)(2,12,60,54)(3,15,61,49)(4,10,62,52)(5,13,63,55)(6,16,64,50)(7,11,57,53)(8,14,58,56)(17,67,85,48)(18,70,86,43)(19,65,87,46)(20,68,88,41)(21,71,81,44)(22,66,82,47)(23,69,83,42)(24,72,84,45)(25,94,75,34)(26,89,76,37)(27,92,77,40)(28,95,78,35)(29,90,79,38)(30,93,80,33)(31,96,73,36)(32,91,74,39), (2,60)(4,62)(6,64)(8,58)(9,55)(10,14)(11,49)(12,16)(13,51)(15,53)(17,78)(18,29)(19,80)(20,31)(21,74)(22,25)(23,76)(24,27)(26,83)(28,85)(30,87)(32,81)(33,42)(34,70)(35,44)(36,72)(37,46)(38,66)(39,48)(40,68)(41,92)(43,94)(45,96)(47,90)(50,54)(52,56)(65,89)(67,91)(69,93)(71,95)(73,88)(75,82)(77,84)(79,86) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64),(65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88),(89,90,91,92,93,94,95,96)], [(1,32,21,59,74,81),(2,25,22,60,75,82),(3,26,23,61,76,83),(4,27,24,62,77,84),(5,28,17,63,78,85),(6,29,18,64,79,86),(7,30,19,57,80,87),(8,31,20,58,73,88),(9,44,39,51,71,91),(10,45,40,52,72,92),(11,46,33,53,65,93),(12,47,34,54,66,94),(13,48,35,55,67,95),(14,41,36,56,68,96),(15,42,37,49,69,89),(16,43,38,50,70,90)], [(1,9,59,51),(2,12,60,54),(3,15,61,49),(4,10,62,52),(5,13,63,55),(6,16,64,50),(7,11,57,53),(8,14,58,56),(17,67,85,48),(18,70,86,43),(19,65,87,46),(20,68,88,41),(21,71,81,44),(22,66,82,47),(23,69,83,42),(24,72,84,45),(25,94,75,34),(26,89,76,37),(27,92,77,40),(28,95,78,35),(29,90,79,38),(30,93,80,33),(31,96,73,36),(32,91,74,39)], [(2,60),(4,62),(6,64),(8,58),(9,55),(10,14),(11,49),(12,16),(13,51),(15,53),(17,78),(18,29),(19,80),(20,31),(21,74),(22,25),(23,76),(24,27),(26,83),(28,85),(30,87),(32,81),(33,42),(34,70),(35,44),(36,72),(37,46),(38,66),(39,48),(40,68),(41,92),(43,94),(45,96),(47,90),(50,54),(52,56),(65,89),(67,91),(69,93),(71,95),(73,88),(75,82),(77,84),(79,86)]])

33 conjugacy classes

class 1 2A2B2C2D 3 4A4B4C4D4E4F4G4H4I4J6A6B6C8A8B8C8D12A12B12C12D12E12F24A24B24C24D
order1222234444444444666888812121212121224242424
size111112222446681212242224412124488884444

33 irreducible representations

dim1111111122222222244444
type++++++++++++++--+
imageC1C2C2C2C2C2C2C2S3D4D4D6D6D6C4oD4C4oD8C4oD12C8.C22D4:2S3S3xD4Q8.7D6Q16:S3
kernelC8:Dic3:C2C6.Q16C8:Dic3D6:C8Q8:2Dic3C3xQ8:C4C4:C4:7S3D6:3Q8Q8:C4C2xDic3C22xS3C4:C4C2xC8C2xQ8C12C6C4C6C4C22C2C2
# reps1111111111111144411122

Matrix representation of C8:Dic3:C2 in GL6(F73)

2200000
49630000
0072000
0007200
0000027
0000270
,
100000
010000
0007200
0017200
0000720
0000072
,
35710000
28380000
0007200
0072000
0000072
000010
,
100000
35720000
000100
001000
000010
0000072

G:=sub<GL(6,GF(73))| [22,49,0,0,0,0,0,63,0,0,0,0,0,0,72,0,0,0,0,0,0,72,0,0,0,0,0,0,0,27,0,0,0,0,27,0],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,72,72,0,0,0,0,0,0,72,0,0,0,0,0,0,72],[35,28,0,0,0,0,71,38,0,0,0,0,0,0,0,72,0,0,0,0,72,0,0,0,0,0,0,0,0,1,0,0,0,0,72,0],[1,35,0,0,0,0,0,72,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,72] >;

C8:Dic3:C2 in GAP, Magma, Sage, TeX

C_8\rtimes {\rm Dic}_3\rtimes C_2
% in TeX

G:=Group("C8:Dic3:C2");
// GroupNames label

G:=SmallGroup(192,374);
// by ID

G=gap.SmallGroup(192,374);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-3,477,64,926,219,184,851,438,102,6278]);
// Polycyclic

G:=Group<a,b,c,d|a^8=b^6=d^2=1,c^2=b^3,a*b=b*a,c*a*c^-1=a^3,d*a*d=a*b^3,c*b*c^-1=d*b*d=b^-1,d*c*d=a^4*b^3*c>;
// generators/relations

׿
x
:
Z
F
o
wr
Q
<