Extensions 1→N→G→Q→1 with N=C4 and Q=C2×S4

Direct product G=N×Q with N=C4 and Q=C2×S4
dρLabelID
C2×C4×S424C2xC4xS4192,1469

Semidirect products G=N:Q with N=C4 and Q=C2×S4
extensionφ:Q→Aut NdρLabelID
C41(C2×S4) = D4×S4φ: C2×S4/S4C2 ⊆ Aut C4126+C4:1(C2xS4)192,1472
C42(C2×S4) = C2×C4⋊S4φ: C2×S4/C2×A4C2 ⊆ Aut C424C4:2(C2xS4)192,1470

Non-split extensions G=N.Q with N=C4 and Q=C2×S4
extensionφ:Q→Aut NdρLabelID
C4.1(C2×S4) = A4⋊SD16φ: C2×S4/S4C2 ⊆ Aut C4246C4.1(C2xS4)192,973
C4.2(C2×S4) = D4⋊S4φ: C2×S4/S4C2 ⊆ Aut C4246+C4.2(C2xS4)192,974
C4.3(C2×S4) = A42Q16φ: C2×S4/S4C2 ⊆ Aut C4486-C4.3(C2xS4)192,975
C4.4(C2×S4) = Q83S4φ: C2×S4/S4C2 ⊆ Aut C4246C4.4(C2xS4)192,976
C4.5(C2×S4) = Q8.4S4φ: C2×S4/S4C2 ⊆ Aut C4484C4.5(C2xS4)192,987
C4.6(C2×S4) = Q8.5S4φ: C2×S4/S4C2 ⊆ Aut C4244+C4.6(C2xS4)192,988
C4.7(C2×S4) = D4.S4φ: C2×S4/S4C2 ⊆ Aut C4324-C4.7(C2xS4)192,989
C4.8(C2×S4) = D4.3S4φ: C2×S4/S4C2 ⊆ Aut C4324C4.8(C2xS4)192,990
C4.9(C2×S4) = D42S4φ: C2×S4/S4C2 ⊆ Aut C4246C4.9(C2xS4)192,1473
C4.10(C2×S4) = Q8×S4φ: C2×S4/S4C2 ⊆ Aut C4246-C4.10(C2xS4)192,1477
C4.11(C2×S4) = Q84S4φ: C2×S4/S4C2 ⊆ Aut C4246C4.11(C2xS4)192,1478
C4.12(C2×S4) = Q8.6S4φ: C2×S4/S4C2 ⊆ Aut C4324C4.12(C2xS4)192,1483
C4.13(C2×S4) = Q8.7S4φ: C2×S4/S4C2 ⊆ Aut C4324+C4.13(C2xS4)192,1484
C4.14(C2×S4) = D4.4S4φ: C2×S4/S4C2 ⊆ Aut C4164C4.14(C2xS4)192,1485
C4.15(C2×S4) = D4.5S4φ: C2×S4/S4C2 ⊆ Aut C4324-C4.15(C2xS4)192,1486
C4.16(C2×S4) = A4⋊Q16φ: C2×S4/C2×A4C2 ⊆ Aut C4486-C4.16(C2xS4)192,957
C4.17(C2×S4) = C82S4φ: C2×S4/C2×A4C2 ⊆ Aut C4246C4.17(C2xS4)192,960
C4.18(C2×S4) = A4⋊D8φ: C2×S4/C2×A4C2 ⊆ Aut C4246+C4.18(C2xS4)192,961
C4.19(C2×S4) = C8.S4φ: C2×S4/C2×A4C2 ⊆ Aut C4644-C4.19(C2xS4)192,962
C4.20(C2×S4) = C8.4S4φ: C2×S4/C2×A4C2 ⊆ Aut C4324C4.20(C2xS4)192,965
C4.21(C2×S4) = C8.3S4φ: C2×S4/C2×A4C2 ⊆ Aut C4324+C4.21(C2xS4)192,966
C4.22(C2×S4) = C2×A4⋊Q8φ: C2×S4/C2×A4C2 ⊆ Aut C448C4.22(C2xS4)192,1468
C4.23(C2×S4) = C2×C4.S4φ: C2×S4/C2×A4C2 ⊆ Aut C464C4.23(C2xS4)192,1479
C4.24(C2×S4) = C2×C4.3S4φ: C2×S4/C2×A4C2 ⊆ Aut C432C4.24(C2xS4)192,1481
C4.25(C2×S4) = GL2(𝔽3)⋊C22φ: C2×S4/C2×A4C2 ⊆ Aut C4324C4.25(C2xS4)192,1482
C4.26(C2×S4) = C8×S4central extension (φ=1)243C4.26(C2xS4)192,958
C4.27(C2×S4) = C8⋊S4central extension (φ=1)246C4.27(C2xS4)192,959
C4.28(C2×S4) = CU2(𝔽3)central extension (φ=1)322C4.28(C2xS4)192,963
C4.29(C2×S4) = C8.5S4central extension (φ=1)324C4.29(C2xS4)192,964
C4.30(C2×S4) = C2×A4⋊C8central extension (φ=1)48C4.30(C2xS4)192,967
C4.31(C2×S4) = A4⋊M4(2)central extension (φ=1)246C4.31(C2xS4)192,968
C4.32(C2×S4) = C2×U2(𝔽3)central extension (φ=1)48C4.32(C2xS4)192,981
C4.33(C2×S4) = U2(𝔽3)⋊C2central extension (φ=1)324C4.33(C2xS4)192,982
C4.34(C2×S4) = C24.10D6central extension (φ=1)246C4.34(C2xS4)192,1471
C4.35(C2×S4) = C2×C4.6S4central extension (φ=1)32C4.35(C2xS4)192,1480

׿
×
𝔽