Extensions 1→N→G→Q→1 with N=Q8×A4 and Q=C2

Direct product G=N×Q with N=Q8×A4 and Q=C2
dρLabelID
C2×Q8×A448C2xQ8xA4192,1499

Semidirect products G=N:Q with N=Q8×A4 and Q=C2
extensionφ:Q→Out NdρLabelID
(Q8×A4)⋊1C2 = Q83S4φ: C2/C1C2 ⊆ Out Q8×A4246(Q8xA4):1C2192,976
(Q8×A4)⋊2C2 = Q8×S4φ: C2/C1C2 ⊆ Out Q8×A4246-(Q8xA4):2C2192,1477
(Q8×A4)⋊3C2 = Q84S4φ: C2/C1C2 ⊆ Out Q8×A4246(Q8xA4):3C2192,1478
(Q8×A4)⋊4C2 = A4×SD16φ: C2/C1C2 ⊆ Out Q8×A4246(Q8xA4):4C2192,1015
(Q8×A4)⋊5C2 = A4×C4○D4φ: trivial image246(Q8xA4):5C2192,1501

Non-split extensions G=N.Q with N=Q8×A4 and Q=C2
extensionφ:Q→Out NdρLabelID
(Q8×A4).1C2 = A42Q16φ: C2/C1C2 ⊆ Out Q8×A4486-(Q8xA4).1C2192,975
(Q8×A4).2C2 = A4×Q16φ: C2/C1C2 ⊆ Out Q8×A4486-(Q8xA4).2C2192,1016

׿
×
𝔽